L’évaluation préliminaire des risques d’inondation 2011

BASSIN ADOUR-GARONNE

Approuvée par le préfet coordonnateur du bassin Adour-Garonne le 21 mars 2012
Introduction...5
Présentation du district hydrographique Adour-Garonne...11
 Géographie...13
 Topographie et occupation du sol...14
 Principaux cours d'eau, bassins hydrographiques et zones littorales...16
Types d'inondations sur le district..18
Nature des principaux enjeux..22
 Description des enjeux...22
Politique de gestion des inondations conduite dans le district..23
 Le Schéma Directeur d'Aménagement et de Gestion de l'Eau (SDAGE)..23
 Dispositifs de gestion globale des inondations sur le bassin Adour Garonne...................................23
 Surveillance et prévision des crues (SPC)..28
 La gestion de crise..28
 Articulation avec les politique de gestion des milieux aquatiques...29
 Articulation avec les politiques d'aménagement du territoire et d'urbanisme...............................32
 Impliquer les collectivités via les Établissements Publics Territoriaux de Bassin.........................34
Évaluation des conséquences négatives des inondations...37
 Objectifs et principes généraux de l'évaluation..39
 Principaux évènements marquants d'inondations..41
 Crue de la Garonne et de ses affluents de juin 1875...41
 Crue torrentielle du 3 octobre 1897...43
 Crue du Tarn et du Lot de mars 1927...43
 Crue du Tarn et de la Garonne des 3 et 4 mars 1930...44
 Crue des 25 et 26 mai 2008 sur le bassin de la Dordogne..45
Submersion marine des 27 et 28 février 2010 (Xynthia)..45
Impacts potentiels des inondations futures..47
 Évaluation des zones concernées par les phénomènes de débordement de cours d'eau, submersions marines et remontées de nappes..47
 Évaluation des impacts potentiels...51
 Autres types d'inondation..80
ANNEXES..85
 Table des illustrations et des tableaux...87
 Liste des Illustrations...87
Sommaire

Liste des tableaux..88
Liste des inondations significatives du passé ...89
Modalités organisationnelles et techniques pour la réalisation de l'EPRI90
 Modalités d'information et d'association des parties prenantes pour l’élaboration de
 l'EPRI...90
 Hypothèses, données et méthodes mobilisées pour la réalisation de l'EPRI..........92
Références et bibliographie...97
Unités de présentation..98
Introduction
L’évaluation préliminaire des risques d’inondation : un diagnostic préalable pour aller vers des choix partagés, première étape de la directive inondation.

Cette directive propose une méthode de travail qui vise à permettre aux territoires exposés au risque d’inondation, qu’il s’agisse de débordements de cours d’eau, de submersions marines, de remontées de nappes ou de ruissellements, d’en réduire les conséquences négatives. En cohérence avec la politique de l’eau, l’échelle de travail retenue est le district hydrographique, ici le bassin Adour Garonne. La démarche proposée pour atteindre les objectifs de réduction des dommages liés aux inondations, fixés par chaque État, est progressive. Enfin, les politiques de gestion du risque d’inondation doivent être élaborées dans le cadre d’une concertation élargie.

La France dispose déjà d’outils de prévention performants (PPR : Plans de prévention des risques, PAPI : Programmes d’action de prévention des inondations, Plans Grands Fleuves,...), qui sont aujourd’hui mobilisables pour mettre en œuvre la directive inondation. Cette directive constitue une opportunité de faire avancer la politique actuelle, de l’organiser et de la hiérarchiser davantage, tout en responsabilisant ses différents intervenants et en donnant une place de premier plan aux collectivités territoriales.

In fine, l’ambition pour l’État et les parties prenantes, forts du cadre fixé par la directive inondation, est de parvenir à mener une politique intégrée de gestion des risques d’inondation sur chaque territoire, partagée par l’ensemble des acteurs.

L’objectif de « choix partagé »

Vouloir réduire les conséquences négatives des inondations conduit à s’interroger sur l’aménagement de l’espace et sur la façon dont les citoyens l’occupent. Les modes d’urbanisation et le fonctionnement social et économique d’un territoire ont un rôle dans sa vulnérabilité aux inondations ou au contraire à sa capacité de réduire les impacts puis de se relever plus ou moins vite d’un traumatisme. L’implication des collectivités territoriales dans la gestion des inondations est donc essentielle.

Par ailleurs, les mesures de réduction des conséquences négatives des inondations, telles que la réduction de la vulnérabilité, une meilleure organisation pour gérer la crise, des mesures de protection des populations et du patrimoine ou un développement économique adapté aux risques doivent être adaptées aux spécificités de chaque territoire, gage de la participation de tous.

En France, le concept de « choix partagé », mis en avant dans la transposition en droit français de la directive, vise à développer une compréhension partagée des risques d’inondation et une vision commune en matière de gestion de ces risques, entre l’État et collectivités territoriales, et ce à une échelle appropriée. Ainsi, dans la loi de transposition de la directive inondation est inscrite la réalisation concertée d’une stratégie nationale de gestion des risques d’inondation (SNGRI).

La définition et la mise en œuvre de cette stratégie nécessitent une connaissance des risques fondée sur une vision homogène des vulnérabilités à l’échelle nationale et à l’échelle de chaque district, ainsi qu’une gouvernance appropriée à ces mêmes échelles.

Une gouvernance adaptée à une large association des acteurs

A l’échelle nationale, afin de permettre aux parties prenantes associées aux côtés de l’État, au premier rang desquelles les collectivités locales et les acteurs de l’eau, de décider ensemble de cette stratégie et d’encadrer la politique de gestion des risques sur tout le territoire, la Ministre du développement durable a souhaité mettre en place une gouvernance nationale pour la gestion des risques d’inondation, par l’installation le 12 juillet 2011 d’une Commission mixte inondation (CMI), émanant des structures de gouvernance existantes dans les domaines de l’eau et de la prévention des risques naturels : le Comité national de l’eau et le Conseil d’orientation pour la prévention des risques naturels majeurs.

Sur chaque district hydrographique, en tenant compte des spécificités et pratiques de chaque territoire, de nouveaux modes de gouvernance se mettent en place, en lien étroit avec le Comité de bassin.
Introduction

Sur le bassin Adour Garonne, une commission inondation de bassin installée par le Préfet Coordonnateur de Bassin comprend 44 membres (État, collectivités et société civile), dont 24 sont issus du Comité de Bassin.

Les acteurs réunis au sein de ces instances de gouvernance auront donc la responsabilité de définir une politique globale de gestion des risques d'inondation et de fixer des priorités d’intervention sur les territoires les plus exposés.

L'EPRI, évaluation préliminaire des risques d'inondation : un premier état des lieux homogène et partagé

L'EPRI est fondée sur les mêmes principes et réalisée avec les mêmes méthodes dans chaque district hydrographique. Elle constitue la première étape de la mise en œuvre de la directive inondation qui en compte 4 (cf. tableau 1). Cet état des lieux qu’est l’EPRI permettra d’identifier les territoires sur lesquels l’effort public pour la réduction des conséquences négatives des inondations sera porté en priorité, notamment via le Plan de gestion des risques d'inondation (PGRI, cf. encadré 1) élaboré à l'échelle du district, décliné ensuite dans des stratégies locales.

L’ambition de l’EPRI est double :

- fournir à l’ensemble des acteurs une base technique permettant d’évaluer les impacts des différents types d’inondations sur la santé humaine, l’environnement, le patrimoine et l’activité économique ; cette étape est instaurée par les services de l’État ;

Compte-tenu de son contenu et de son échelle d’élaboration, l’EPRI n’a pas vocation à être un élément constitutif du porter à connaissance de l’État, mais plutôt un document préparatoire dont l’objectif premier est de permettre de fixer des priorités et des objectifs partagés par tous. Elle est publique, et donne à chacun une vision d’ensemble des conséquences négatives des inondations à l’échelle du district.

Une EPRI nationale fera a posteriori la synthèse de l’ensemble des EPRI des districts, mettant en valeur les événements d’impact national voire européen. Elle alimentera la stratégie nationale de gestion des risques d’inondation.

<table>
<thead>
<tr>
<th>Calendrier 2011-2015</th>
<th>Une méthode progressive en 4 étapes</th>
<th>Une révision tous les 6 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>1. État des lieux : Évaluation Préliminaire du Risque sur le district</td>
<td></td>
</tr>
<tr>
<td>mi 2012</td>
<td>2. Définition des priorités : Identification des Territoires à Risque Important</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>3. Approfondissement des connaissances sur ces priorités : Cartographie des risques sur les Territoires à Risque Important</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>4. Définition d’une politique d’intervention sur le district : Élaboration d’un plan de gestion du risque d’inondation sur le district, intégrant des stratégies locales de gestion du risque d’inondation sur les territoires à risque important</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 1: les étapes de la mise en œuvre de la directive inondation
Cible : un PGRI en 2015

En encadrant et optimisant les outils actuels existants (PPRi, PAPI, Plans grands fleuves, schéma directeur de la prévision des crues,...), le plan de gestion retenu donnera une vision stratégique des actions à conjuguer pour réduire les conséquences négatives des inondations sur un territoire donné.

Au service de territoires rendus ainsi plus durables, ce plan à l'échelle de chaque grand bassin orchestrera toutes les composantes de la gestion des risques d'inondations : information préventive, connaissance, surveillance, prévision, prévention, réduction de la vulnérabilité, protection, organisation du territoire, gestion de crise, retour d’expérience.

Contenu et présentation de l'EPRI

L'EPRI présente les grandes caractéristiques du district vis-à-vis du risque d'inondation, et évalue les conséquences négatives que pourraient avoir les inondations sur le territoire en analysant les événements du passé et en estimant les impacts potentiels des inondations futures. Les informations sur les principaux événements du passé nous renseignent sur la sensibilité de notre territoire à ces événements majeurs, qui peuvent se reproduire aujourd'hui dans un contexte de vulnérabilité accrue. Pour compléter ces enseignements, une analyse des enjeux actuels potentiellement exposés est réalisée afin d'avoir une vision objective, homogène et systématique.

Le district a été décomposé en 7 unités de présentation afin de faciliter la lecture de l'EPRI. Après une présentation du district et de ces principaux enjeux (page 11), une synthèse des informations est présentée à l'échelle du district (partie 3), puis est complétée d’une analyse réalisée pour chacune de ces unités (annexes 1 à 7).
Présentation du district hydrographique Adour-Garonne
Présentation du district hydrographique Adour-Garonne
Présentation du district hydrographique Adour-Garonne

Géographie

Le district Adour-Garonne regroupe les bassins versants hydrographiques de l'Adour, de la Garonne, du Lot, du Tarn, de l'Aveyron, de la Dordogne et de la Charente, ainsi que les cours d'eau côtiers charentais et aquitains.

Il couvre 2 régions en totalité Aquitaine et Midi-Pyrénées, la moitié sud de Poitou-Charente et plus partiellement Limousin, Auvergne et Languedoc-Roussillon correspondant à 25 départements en tout ou partie et 6 900 communes.
Présentation du district hydrographique Adour-Garonne

Relativement peu peuplé, il n’héberge qu’un dixième de la population nationale (7 000 000 habitants) alors qu’il s’étend sur 1/5 du territoire (115 000 km²) avec deux grandes métropoles de plus de 700 000 habitants : Toulouse et Bordeaux, 3 agglomérations de plus de 100 000 habitants : Pau, Bayonne et Angoulême ainsi que 30 autres villes de plus de 20 000 habitants. Une grande partie de la population se regroupe dans un maillage dispersé, mais régulier d’agglomérations de taille plus réduite, le reste (30 %) vit en habitat épars.

Topographie et occupation du sol

Du point de vue topographique, le bassin Adour Garonne se présente comme une grande cuvette, le bassin aquitain, drainé par de grandes vallées : Adour, Garonne, Tam, Lot, Dordogne, Charente. Il est bordé par deux chaînes montagneuses: les Pyrénées et le Massif central, dotées d’un réseau dense de cours d’eau.

Le régime des écoulements est contrasté : crues et inondations parfois importantes et violentes, étiages estivaux ou de début d’automne régulièrement marqués. Dans la partie centrale du bassin une pluviométrie limitée avec des températures élevées en été entraîne un fort déficit hydrique naturel pour les cultures et pour l’alimentation des rivières et des nappes.

Un parc important d’aménagements hydrauliques variés joue un rôle notable dans la ressource en eau du bassin et sa gestion : barrages-réservoirs, petites retenues collinaires, canaux, tous les usages étant concernés.

Le district est riche en eaux souterraines : nappes alluviales, sources karstiques et nappes captives profondes, ces deux dernières étant majoritairement utilisées pour la production d’eau potable.
Présentation du district hydrographique Adour-Garonne

Illustration 5: Occupation du sol en Adour Garonne
Présentation du district hydrographique Adour-Garonne

Le bassin Adour Garonne a une vocation agricole affirmée (cultures et élevages), caractérisée par une forte demande en eau pour les besoins de l’irrigation (40 % des surfaces irriguées françaises, soit 13 % de la surface agricole utile du bassin). Cette agriculture est à la base d’une industrie agroalimentaire diversifiée et de qualité.

Le territoire d’Adour-Garonne est peu industrialisé. Le tissu industriel traditionnel (chimie lourde, industrie du cuir, du textile et du papier, métallurgie,…), bien que par endroits en déclin, voisine avec des industries de pointe comme l’électronique et l’aéronautique.

On notera également l’importance de la production hydroénergétique dans le Massif central et les Pyrénées, équivalente à celle de 6 tranches nucléaires.

Les richesses piscicoles du district font l’objet d’une forte valorisation par la pêche professionnelle en eau douce et en zone maritime, ainsi que par les nombreux pêcheurs de loisir.

Le littoral atlantique, surtout dans les bassins de Marennes-Oléron et d’Arcachon, abrite de nombreuses exploitations conchylicoles qui représentent 40 % de la production française de coquillages.

La variété des paysages du district et de son patrimoine aquatique, ainsi que sa frange océanique et le thermalisme (premier bassin français), attirent de nombreux touristes et estivants (plus de 3 millions par an). L’activité du tourisme est une composante forte du développement économique local, notamment par le biais des loisirs liés à l’eau, des sports nautiques et du tourisme fluvial ou de l’écotourisme, tant sur les lacs, les rivières et les canaux que sur le littoral.

Principaux cours d’eau, bassins hydrographiques et zones littorales

Le bassin Adour-Garonne représente une superficie de 115 000 km². Avec 120 000 kilomètres de cours d’eau, permanents ou non, d’une longueur supérieure à 1 kilomètre, la densité est proche de 1 km de cours d’eau par km² de surface :

- Le bassin de l’ADOUR : 16 000 km²
- Le bassin de la CHARENTE : 10 000 km²
- Le bassin de la DORDOGNE : 24 000 km²
- Le bassin de la GARONNE : 57 000 km² (dont 11 800 km² pour le Lot et 15 700 km² pour le Tarn)
- Le bassin du LOT : 11 800 km²
- Le bassin TARN -AVEYRON : 15 700 km² (dont 5 170 km² pour Aveyron)
- Le Littoral atlantique (côtières sud ouest) : 8 000 km²

Dans le cadre de l’Évaluation Prélminaire des Risques d’Inondation, le bassin Adour Garonne a été subdivisé en 7 bassins hydrographiques, qui seront par la suite retenus comme unités de présentation : les caractéristiques des principaux cours d’eau ainsi que leurs fonctionnements hydrologiques sont présentés par unité de présentation dans les annexes correspondantes.
Illustration 6: Les Unités de Présentation du bassin Adour Garonne
Types d’inondations sur le district

Les inondations du district Adour-Garonne sont avant tout le fait des débordements de cours d’eau. Les événements peuvent être à dynamique lente dans les plaines, principalement en Charente avec influence des surcotes marines, mais aussi rapide (torrentielle), voire « éclair », dans les zones montagneuses à fort relief et sous influence méditerranéenne.

D’un point de vue hydro-climatique on regroupe les phénomènes en trois principaux types :

- Les crues océaniques pyrénéennes
 Maurice Pardé les décrit comme les plus considérables et les plus originales du bassin. Ce sont principalement des crues de printemps (entre mai et juillet), mais elles peuvent se produire en toute saison. Elles sont provoquées par des averses amenées par des vents du nord et du nord-ouest lors de dépressions océaniques (averses de front froid, intenses et suffisamment prolongées). Ces dernières atteignent leur paroxysme sur les pentes de la Montagne Noire (Tarn, Haute-Garonne, Hérault, Aude) et sur les versants français des Pyrénées.

Les crues océaniques classiques

Les crues méditerranéennes

Quatre autres types d’inondation sont également à considérer :

Les inondations torrentielles

Les inondations par ruissellement

Dans le district Adour-Garonne, elles se produisent en milieu urbain ou rural dans des périodes où les pluies préalables à l’événement ont été abondantes et ont saturé les sols comme par exemple dans le Tarn amont en mars 1930, en Dordogne en juin 2007 sur la Loue, ou en mai 2008 en amont du bassin de l’Isle.

Les inondations par submersion marine

Une série d’influences maritimes peut provoquer l’inondation de zones littorales : surcote marine, action des vagues, rupture de défense contre la mer. Elles sont généralement associées à des tempêtes (basses pressions atmosphériques), dans un régime océanique, avec des facteurs aggravants liés à la conjonction de surcote maritime, de forte marée et d’éventuelles crues océaniques.
Les inondations par remontée de nappe

À l'exception du bassin de la Charente qui connaît des crues lentes, on observe des crues rapides, voire très rapides, sur les hauts bassins. Les crues les plus rapides se produisent sur les zones à fort relief. Ainsi, les difficultés de prévision se situent principalement sur les bassins intermédiaires et à l'amont.

La surveillance de nombreux petits bassins versants

Le contrôle des bassins amont est très délicat. D'une superficie comprise entre 170 et 1000 km², la connaissance de la pluie arrosant ces petits bassins est indispensable pour effectuer des prévisions. Ces bassins situés sur les flancs montagneux sont à l'origine des crues violentes observées sur les trois bassins de l'Adour, de la Dordogne et de la Garonne.

De plus, le régime de pluie océanique sur les parties centrale et ouest du bassin, et d'origine méditerranéenne à l'est, engendre des crues de natures très différentes rendant souvent l'annonce et la prévision des crues délicates.

Dans ces bassins, la mise en place d'un réseau de pluviographes offrant une couverture acceptable nécessiterait au moins de tripler le nombre de stations automatiques, ce qui signifierait l'installation de pluviographes dans des secteurs de montagne difficiles d'accès et vulnérables aux intempéries. Si la couverture actuelle permet de mettre en œuvre des modèles de prévision basés sur des relations pluie/débit, il est probable que la connaissance insuffisante de la variation de la pluie dans l'espace est un élément important pouvant expliquer en partie la difficulté à caler des relations pluie/débit. L'utilisation des lames d'eau évaluées à partir des radars météorologiques est à poursuivre et à amplifier. Cette technique de mesure est toutefois fortement handicapée par la présence de fortes reliefs.

Dans ces bassins, la configuration géographique et le régime pluviométrique provoquent des crues très rapides. Les pentes très fortes et les bassins en forme d'éventail favorisent la concentration rapide du ruissellement et engendrent des hydrogrammes à très fort gradient. Ceci explique pour une bonne part les vitesses de propagation importantes observées et un délai de prévision ne dépassant pas 6 à 12 h sur les parties intermédiaire et aval, de l'ordre de 3 à 4 h sur les stations immédiatement à l'amont, voire 2 h pour les petits bassins amont. Des vitesses de montée des eaux pouvant atteindre entre 0.50 et 1 m à l'heure (voire plus) sont fréquemment observées.
Présentation du district hydrographique Adour-Garonne

Sur l’ensemble du bassin Adour-Garonne, les enjeux sont nombreux ; l’amélioration des systèmes d’alerte et de prévision des crues est une action importante de la politique de prévention des risques.

L’importance des bassins intermédiaires

Les bassins intermédiaires amènent des apports diffus très variables suivant l’importance des pluies sur cette zone. L’erreur de calcul de prévision engendrée par une méconnaissance des pluies sur le bassin intermédiaire peut être supérieure à 0,50 m sur une amplitude de 2 à 3 m. La prise en compte des apports diffus dans les processus de prévision présente toujours beaucoup de difficultés.

Pour pallier cette cause d’erreur, des méthodes de prévision gérées par une procédure multi-modèles ont été mises en place sur les parties moyenne et aval de certains bassins. Cette démarche repose essentiellement sur un processus numérique. Une connaissance plus précise de l’événement pluviométrique se déroulant sur le bassin est à rechercher.

L’influence de la marée

Les conditions d’écoulement dans les zones fluviales influencées par la marée sont très spécifiques. Ce type de situation nécessite la mise en œuvre de modélisations complexes qui demandent de coupler des informations de différentes natures (météorologiques, hydrauliques…). Une expertise particulière doit être développée dans ce domaine.
Nature des principaux enjeux

Description des enjeux

Dans les différents bassins, les populations se sont installées dans les plaines inondables et l’accroissement de l’urbanisation dans les 30 dernières années n’a fait que renforcer le phénomène. Les enjeux à signaler sont de 3 types :

- des enjeux particulièrement exposés dans les zones de crue les plus fréquentes : les enjeux liés à la sécurité des personnes y sont plutôt ponctuels,
- des enjeux dans les lits majeurs des cours d’eau soumis à des crues rapides : la difficulté est alors la rapidité de déclenchement de l’alerte, la fiabilité de la prévision des crues et le temps de réaction des secours à mettre en place pour des secteurs habités qui vont se retrouver rapidement noyés ou isolés ; tous les bassins amont de la Garonne, du Tarn, du Lot, de l’Adour et de la Dordogne sont concernés,
- des enjeux dans les plaines inondables plus vastes : la difficulté réside alors dans l’importance des enjeux quand il s’agit d’agglomérations aussi importantes que Toulouse, Montauban, Bordeaux, Agen ou Angoulême, ou dans des zones fortement touristiques proches du littoral.

La description des enjeux par unité de présentation est détaillée dans les parties annexes correspondantes.
Présentation du district hydrographique Adour-Garonne

Politique de gestion des inondations conduite dans le district

Depuis les années 80, l'État a pris de nombreuses dispositions pour renforcer la politique de gestion des risques d’inondations. La loi « risques » 2003-699 du 30 juillet 2003 a renforcé ces dispositifs selon les trois objectifs suivants :

- Réduire le danger en donnant aux pouvoirs publics les moyens de travailler en amont des zones urbanisées, dans le respect du fonctionnement des milieux naturels ;
- Susciter des comportements préventifs par le développement de la conscience du risque auprès des populations exposées ;
- Réduire la vulnérabilité des personnes et des biens.

Ces objectifs constituent les fondements des principes d'une gestion globale mise en œuvre dans le cadre des Programmes d’Action de Prévention des Inondations (PAPI) et des Plans Grands Fleuves. Ces outils de gestion des inondations déjà existants ont vocation à s’inscrire dans le cadre de la Directive Inondations, en s’adaptant le cas échéant aux nouvelles exigences. La mise en œuvre de la directive inondations devra s’appuyer sur la richesse des dispositifs de gestion déjà mis en œuvre sur le bassin Adour Garonne en garantissant leur cohérence et leur continuité au fur et à mesure de son élaboration.

La mise en œuvre de la Directive Inondations devra également rechercher une cohérence avec les objectifs des autres politiques publiques mises en œuvre sur le bassin Adour Garonne (aménagement du territoire, développement local, gestion des milieux aquatiques, préservation des milieux naturels et du patrimoine culturel, ...). Il s’agira donc de dégager des synergies entre les différents dispositifs, dans une perspective de développement durable.

Le Schéma Directeur d’Aménagement et de Gestion de l’Eau (SDAGE)

Ses orientations sont déclinées selon les priorités locales, dans différents Schémas d’Aménagement et de Gestion des Eaux qui sont élaborés à une échelle plus locale (par une Commission Locale de l’Eau).

Le volet « Inondations » du SDAGE Adour Garonne est décliné dans son orientation fondamentale : « Gérer la rareté de l’eau et prévenir les inondations ».

Dispositifs de gestion globale des inondations sur le bassin Adour Garonne

La liste et le périmètre des stratégies locales du bassin devront être arrêtés deux ans après la sélection des territoires à risques d’inondations importants (TRI). Ces stratégies locales auront pour objectif de favoriser l’implication des parties prenantes au niveau local dans la définition d’une politique d’intervention à une échelle hydrographique cohérente.

Sans forcément prendre en compte l’ensemble des exigences des stratégies locales, différents types de dispositifs de gestion globale des inondations ont été mis en place sur le bassin Adour Garonne dans le cadre des Programmes d’Action de Prévention des Inondations (PAPI) et des Plans Grands Fleuves.
Les programmes d’Actions de Prévention des Inondations (PAPI)

Les PAPI, initiés en 2002, ont pour objectif de favoriser une gestion intégrée des risques d’inondations dans le but de limiter leurs conséquences dommageables sur la santé humaine, les biens, les activités économiques et l’environnement.

Outil de contractualisation entre l’État et les collectivités territoriales, le dispositif PAPI permet la mise en œuvre d’une politique globale, pensée à l’échelle d’un bassin de risque (échelle hydrographique cohérente).

Dans le bassin Adour Garonne, 5 PAPI ont été contractualisés (sur les 53 en France dans le cadre de cet appel à projet pour un montant de 630,5 millions d’euros, dont 210 millions financés par l’État). Il s’agit des projets (cf. illustration 9) :
- PAPI Charente ;
- PAPI Dordogne ;
- PAPI Dordogne lotoise et ses affluents ;
- PAPI Léze ;
- PAPI Thoré.
Présentation du district hydrographique Adour-Garonne

Le nouvel appel à projet lancé en 2011 doit permettre le maintien de la dynamique instaurée par le 1er appel à projet de 2002. Il constitue également un dispositif de transition pour préparer la mise en œuvre de la directive inondations (DI). Il s’inspire aussi bien des précédents PAPI et du bilan qui en a été fait que du futur cadre de la politique de gestion des projets d’EPRI du Bassin Adour Garonne soumise à concertation inondations tel qu’il est défini par la DI. Ainsi certaines modalités de la nouvelle démarche PAPI présentent des innovations fortes par rapport à l’appel à projet précédent.

Afin de s’assurer de leur bonne articulation avec les dispositifs de gestion des milieux aquatiques, les nouveaux projets PAPI sont examinés par une commission inondation de bassin Adour Garonne.

Le Plan Garonne

Le Plan Garonne concerne le fleuve Garonne dans l’intégralité de son cours français et entend privilégier une politique favorisant la meilleure cohabitation entre les populations et le fleuve, de façon à passer de l’antagonisme à l’intérêt, en opérant un retour vers le fleuve.

Son objectif global est la mise en œuvre d’un projet de développement maîtrisé préservant l’environnement général du fleuve tout en exploitant l’ensemble de ses potentialités dans les logiques suivantes :

- le fleuve et les populations ou « comment gérer la cohabitation entre population sans cesse croissante et un fleuve sauvage mais menacé ? »,
- le fleuve et le développement économique ou « comment développer en préservant et préserver pour développer ? »,
- le fleuve et les milieux ou « comment gérer durablement des milieux de vie, révélateurs d’un territoire de qualité ? »,
- le fleuve et les paysages ou « quelle identité culturelle et paysagère pour le val de Garonne ? ».

Cette politique sera alimentée par la convention mais également par des mesures « eau » du volet régional de chacun des contrats de projets État-région Aquitaine et Midi-Pyrénées.

Pour ce qui concerne le volet « Inondation », le financement est le suivant :

- État : 33 M€, BOP 181 et FPRNM, dont 23 M€ Midi-Pyrénées et 10 M€ Aquitaine ;
- Conseil régional Midi-Pyrénées : 4 M€ ;
- Conseil régional Aquitaine : 5 M€.

Le plan de submersion rapide

L’adoption du Plan National de Submersion Rapide fait suite à la tempête Xynthia de février 2010 qui a touché le littoral atlantique et aux inondations du Var survenues au mois de juin de la même année.

Ce plan national vise en priorité la sécurité des personnes exposées aux phénomènes brutaux de submersions rapides : submersions marines, inondations consécutives à des ruptures de digues et crues soudaines. Il comprend des mesures de prévention, de prévision, de protection et de sauvegarde des populations pour les 5 années à venir.

Au niveau local, ce plan vise une incitation partenariale entre l’État et les collectivités territoriales permettant de soutenir l’engagement de travaux pour la mise en sécurité d’ouvrages présentant un risque pour la sécurité des personnes.

Maitrise de l’urbanisation et réduction de la vulnérabilité

Les plans de prévention des risques (PPR)

1 Le bilan sur la mise en œuvre des premiers PAPI est disponible sur :
2 Pour plus de détails sur le nouvel appel projet PAPI :
http://developpement-durable.gouv.fr/Les-programmesd-actions-de,24021.html

25 EPRI-2011
Les PPR inondations sont élaborés à partir de la détermination de l’aléa de référence ou de crue de référence, qui se définit comme la plus forte crue connue ou la crue centennale, si celle-ci est inférieure à cette dernière.

Le PPRi a pour but de :

- Élaborer une cartographie précise des zones de risque ;
- Interdire des implantations humaines dans les zones les plus dangereuses, et les limiter dans les autres zones inondables ;
- Prescrire des mesures pour réduire la vulnérabilité des inondations et constructions existantes ;
- Prescrire les mesures de protection et de prévention collectives ;
- Préserver les capacités d’écoulement et d’expansion des crues.

La mise en œuvre de cette politique de prévention relève d’une compétence partagée mêlant les services déconcentrés de l’État, les collectivités territoriales, d’autres ministères, ainsi que les citoyens, chacun jouant un rôle dans son domaine. Les PPR sont donc des actes réglementaires, valant servitude d’utilité publique, élaborés sous la responsabilité du préfet en associant les communes. Ils sont approuvés après enquête publique et peuvent l’être par anticipation. Les servitudes du PPR sont annexées aux plans locaux d’urbanisme (PLU).

Doctrines locales

La mise au point d’une doctrine locale vise à fixer un cadre homogène sur lesquels les services en charge de l’élaboration des PPRi pourront s’appuyer lors de la conduite des études et des consultations menées avec les maires des communes concernées. Elle permet aussi d’harmoniser les règles appliquées, afin d’éviter des différences qui ne soient pas justifiées par une situation spécifique.

Document de référence de prise en compte du risque d'inondation dans les projets d'aménagement établi par la DREAL Midi Pyrénées.

Le Porté à Connaissances

Le Porté à Connaissance des risques majeurs (ex-Dossier Communal Synthétique DCS), a pour objectif d’informer et de sensibiliser la population de la commune sur les risques encourus et sur les mesures de sauvegarde pour s’en protéger. Les documents cartographiques de ce dossier n’ont pas de valeur réglementaire ni pour l’occupation des sols ni en matière de contrats d’assurance. Le PAC ne peut donc être opposable à un tiers : il ne se substitue en aucun cas aux règlements en vigueur (notamment pour la maîtrise de l’urbanisme).

Établi par l’État permet au maire de développer l’information préventive dans sa commune.

L'information préventive

L’objectif de l’information préventive est de permettre au citoyen d’être conscient des risques majeurs auxquels il peut être exposé. En étant avertis sur les phénomènes, leurs conséquences et les mesures pour s’en protéger et en limiter les dommages, le citoyen deviendra donc moins vulnérable car il adoptera un comportement adapté à chaque situation.

Le dossier départemental des risques majeurs (DDRM)

Au sein du DDRM, le préfet (selon l’article R125-11 du Code de l’Environnement) répertorie l’ensemble des informations essentielles sur les risques naturels et technologiques majeurs à l’échelle de son département, ainsi que toutes les mesures de prévention et de sauvegarde prévues pour limiter leurs effets.

On y retrouve :

- La cartographie et la liste de l’ensemble des communes touchées par les risques majeurs ;
- La liste des risques majeurs identifiés dans le département, leurs conséquences prévisibles pour les personnes, les biens et l’environnement ;
Présentation du district hydrographique Adour-Garonne

L'historique des événements et des accidents connus et significatifs survenus dans le département, constituant une véritable mémoire du risque pour les populations. Il récapitule les principales études, sites Internet, ou documents de référence qui peuvent être consultés pour une complète information.

Le DDRM explicite les mesures de prévention, de protection et de sauvegarde. Il définit aussi les modes de mitigation qui peuvent être mis en œuvre par rapport à l'intensité des aléas et de la vulnérabilité des enjeux, afin d'en limiter les effets. Le DDRM aide ainsi les communes concernées par un risque majeur à élaborer leur Document d'Information Communal sur les Risques Majeurs (DICRIM).

Ce dossier est librement consultable dans toutes les préfectures, sous-préfectures, ainsi qu’aux mairies des communes listées.

Le dossier d'information communale sur les risques majeurs (DICRIM)

Établi par le Maire, le DICRIM est destiné à informer la population sur les risques naturels et technologiques affectant le territoire communal ainsi que sur les consignes de sécurité devant être mises en œuvre en cas de réalisation du risque. Il se doit donc d’être clair et pédagogique.

Le DICRIM décrit les risques présents sur la commune et leurs conséquences prévisibles pour les personnes, les biens et l'environnement, ainsi que :
- les moyens de la commune ;
- l'exposé des mesures de prévention, de prévention, de sauvegarde répondant à ces risques et notamment celles prises dans le cadre des pouvoirs de police du Maire ;
- la conduite à tenir, les consignes de sécurité à suivre selon les risques.

De plus, ce document, doit exposer succinctement ces risques, avec des cartes au 1/25000, en précisant les secteurs de la commune les plus impliqués par les différents risques (zones inondables, cavités souterraines...).

L'information des acquéreurs et locataires (IAL) des biens immobiliers

Le Code de l'Environnement instaure deux obligations distinctes d'information auprès des acquéreurs et locataires de biens immobiliers : sur les risques naturels affectant le bien, d'une part, puis sur les sinistres résultant de catastrophes naturelles reconnues (CATNAT) et qui ont touché tout ou partie de la propriété concernée, d'autre part.

L'IAL concerne tous les bailleurs ou vendeurs, personne physique ou morale de droit privé ou public, l'État et les établissements publics. Tous les types de biens bâtis ou non, quelle que soit la destination (les locations saisonnières également). Tous les contrats écrits de location ou de vente, promesses de vente, les successions, les ventes publiques. La liste des communes des risques concernés est publiée sous forme d'arrêté préfectoral dans chaque département.

L'information, qui porte entre autre sur les risques inondations, mouvement de terrain, et tempête doit être promulguée à l'intérieur des zones exposées aux risques naturels pour les communes ayant un PPR approuvé, mais aussi à l'intérieur du périmètre étudié dans les communes ayant un PPR prescrit.

Les repères de crues

Les repères de crue sont des marques qui matérialisent les crues historiques d’un cours d’eau.

Témoins des grandes crues passées, ils permettent de faire vivre la mémoire des inondations que le temps ou les traumatismes peuvent parfois effacer. Ils se présentent sous différentes formes (trait ou inscription gravée dans la pierre, plaque métallique ou un macaron scellé, etc.) et on les trouve sur différents types de bâtiments (bâtiments publics ou privés, quais, piles de pont, etc.).

Les repères de crues font partie du patrimoine des connaissances sur les crues et représentent une source d’information indispensable au renforcement de la conscience du risque. Ils permettent aussi, dans le cadre de la connaissance hydraulique des cours d’eau, d’affiner le savoir et l’expertise des crues historiques.

L'article L563-3 du Code de l'Environnement impose aux maires de réaliser l'inventaire des repères de crues existant sur le territoire communal et d'établir les repères correspondant aux crues historiques, aux nouvelles crues exceptionnelles ou aux submersions marines.

27
Présentation du district hydrographique Adour-Garonne

Réunions d'information biennales dans le cadre de PPR
Le Maire doit informer la population au moins une fois tous les deux ans par des réunions publiques communales, ou tout autre moyen approprié. Cette information porte notamment sur les caractéristiques des risques naturels connus dans la commune, les mesures de prévention et de sauvegarde, les dispositions du PPR, les modalités d'alerte, l'organisation des secours, les mesures prises par la commune pour gérer le risque, et les garanties prévues dans le cadre des indemnisations CATNAT.

Surveillance et prévision des crues (SPC)
L'organisation de la surveillance, de la prévision et de la transmission de l'information sur les crues dans le bassin Adour Garonne est définie sous la responsabilité de l'État dans le Schéma Directeur de Prévision des Crues (SDPC) adopté le 26 juillet 2005.

Ce présent schéma a pour objet de :
- définir et formaliser dans le bassin la liste des cours d'eau sur lesquels l'État assure la transmission de l'information sur les crues, ainsi que leur prévision lorsque celle-ci aura pu être réalisée;
- préciser l'organisation mise en œuvre par l'État pour réaliser cette mission ;
- préciser les conditions de cohérence entre les dispositifs mis en place par les collectivités territoriales ou leurs besoins propres et ceux de l'État.

Sur le bassin Adour Garonne, la prévision des crues est assurée par 5 Services de Prévision des Crues (SPC) rattachés aux services déconcentrés de l'État :
- Le SPC Adour ;
- Le SPC Littoral ;
- Le SPC Garonne ;
- Le SPC Tarn Lot ;
- Le SPC Dordogne.

En application de la circulaire du 4 novembre 2010, le SDPC est actuellement en cours de révision.
Dans le cadre des dispositions du Plan National Submersions Rapides (PSR), la possibilité d’étendre la surveillance aux pluies violentes et la prévision aux submersions marines est étudiée par le Ministère en charge de l’écologie et Météo-France.

La gestion de crise
Les acteurs de la gestion de crise
En cas d’occurrence d’une inondation, le maire est le premier responsable du secours aux populations sur le territoire de sa commune. Il s’informe sur le risque d’inondation par la consultation régulière de la carte vigilance météorologique et de la carte de vigilance crues. Il active alors les dispositifs de gestion à l’échelle communale pour apporter un premier soutien aux populations et prévenir la crise.

Lorsque l’événement impacte plusieurs communes, le préfet de département coordonne l’action des secours dans le département. Il s’appuie sur les informations de vigilance fournies par les SPC et Météo-France. Le préfet de département réunit l’ensemble des services concernés au sein de la préfecture pour coordonner l’action de l’État en cas de crise d’inondations.

Certains événements de grande ampleur peuvent nécessiter l’appui de moyens opérationnels supplémentaires. Dans ce cas, le préfet de la zone de défense assure la mobilisation des moyens à destination des départements sinistrés.
Présentation du district hydrographique Adour-Garonne

Les dispositifs d'aide à la gestion de crise

Le plan communal de sauvegarde

La loi impose au Maire des communes soumises à un Plan de Prévention des Risques inondation approuvé, l’élaboration d’un Plan Communal de Sauvegarde. Mis en place sous l’autorité du Ministère de l’Intérieur, ce plan vise à préparer et organiser la commune pour faire face aux situations d’urgence, et ce en tenant compte de la taille et des habitudes de fonctionnement de cette dernière.

L’élaboration de ce plan passe par :

- un diagnostic des risques ;
- un travail sur l’alerte et l’information de la population ;
- un recensement des moyens communaux et privés ;
- la création d’une organisation de crise ;
- la réalisation d’outils pratiques (réflexions sur des questions pragmatiques « qui fait quoi, comment ? ») ;
- la pérennisation du projet dans le temps (exercices et procédures de mise à jour).

Dans l’intention de garantir le caractère opérationnel du PCS dans le temps, certains éléments importants sont à prendre en compte :

- la participation du maximum de personnes (élus, agents…) à son élaboration pour favoriser son caractère opérationnel et son appropriation par les acteurs - la réalisation d’outils simples
- la mise en place d’exercices réguliers permettant de tester tout ou partie du PCS et d’instaurer le principe d’amélioration continue.

Le plan d’Organisation de Réponse de la Sécurité Civile (ORSEC)

Crée par la loi de modernisation de la sécurité civile du 13 août 2004, le plan ORSEC se décline à deux niveaux :

- Arrêté par le préfet du département, le plan Orsec détermine, au niveau départemental, l’organisation générale des secours. Au regard des risques existants, il recense l’ensemble des moyens publics et privés susceptibles d’être mis en œuvre, et comprend des dispositions générales applicables en toute circonstance et des dispositions propres à certains risques particuliers.
- Au niveau zonal, le plan Orsec de zone est mis en œuvre en cas de catastrophe affectant deux départements au moins de la zone de défense ou rendant nécessaire le déploiement de moyens dépassant le cadre départemental.

Les dispositions spécifiques des plans Orsec prévoient les mesures à prendre et les moyens de secours à mettre en œuvre pour faire face à des risques de nature particulière ou liés à l’existence et au fonctionnement d’installations ou d’ouvrages déterminés. Il peut définir un plan particulier d’intervention (PPI), notamment pour des établissements classés Seveso, des barrages hydro-électriques ou des sites nucléaires.

Le préfet déclenche la mise en application du plan ORSEC et assure la direction des secours.

Articulation avec les politiques de gestion des milieux aquatiques

Si le PGRI devra suivre le même calendrier que le SDAGE et s’articuler avec celui-ci. Sa déclinaison dans le cadre des stratégies locales devra privilégier les actions conciliant la gestion des inondations avec l’atteinte des objectifs de qualité des milieux de la directive cadre sur l’eau (DCE).

Au-delà des obligations réglementaires auxquelles est soumis n’importe quel projet (instruction au titre de la loi sur l’eau notamment), les actions des stratégies locales devront promouvoir une véritable gestion intégrée des milieux en privilégiant notamment la préservation de l’espace de mobilité des cours d’eau et des zones humides.

Il s’agit ainsi d’articuler les stratégies locales avec les différents outils de gestion des milieux aquatiques : Sage et Contrats de Milieu.
Présentation du district hydrographique Adour-Garonne

Les schémas d’aménagement et de gestion des eaux

Le Schéma d’Aménagement et de Gestion des Eaux (SAGE) est un document de planification définit à une échelle hydrographique cohérente. Il est élaboré collectivement dans le cadre d’une Commission Locale de l’Eau (CLE) associant les acteurs du territoire (État, collectivités locales, usagers) et est approuvé par le préfet.

Il définit des objectifs généraux d’utilisation, de mise en valeur, de protection quantitative et qualitative de la ressource en eau. Par ailleurs, beaucoup de SAGE abordent le thème des inondations dont le contenu peut varier d’un SAGE à l’autre.

Les dispositions d’un SAGE ont une portée juridique et administrative sur l’ensemble des décisions en lien avec le domaine de l’eau sur le territoire qu’il couvre :

- Le règlement et les cartes du SAGE sont opposables aux tiers ;
- Les décisions dans le domaine de l’eau doivent être compatibles ou rendues compatibles avec le plan d’aménagement et de gestion durable de la ressource en eau ;
- Les documents d’urbanisme (Schéma de Cohérence Territoriale, Plan Local d’Urbanisme, carte communale) doivent être compatibles avec les objectifs de protection élaborés par le SAGE ;
- Le Schéma départemental des carrières doit être compatible avec les dispositions du SAGE.

Les SAGE doivent eux-mêmes être compatibles avec le SDAGE.
Présentation du district hydrographique Adour-Garonne

Sur le bassin Adour Garonne, en octobre 2011, (cf. illustration 10):

- 5 SAGE sont en émergence : île d’Oléron, Dordogne Amont, Viaur, Hers mort Girou, Côtières basques,
- 1 SAGE est en cours d’instruction : Isle Dronne,
- 12 SAGE sont en phase d’élaboration : Charente, Seudre, Estuaire de la Gironde et milieux associés, Ciron, Etangs littoraux Born et Buch, Vallée de la Garonne, Midouze, Adour amont, Neste Ourse, Agout, Lot amont et Célé.
- 4 SAGE font l’objet d’une première révision : Tarn amont, Leyre et cours d’eau cotiers et milieux associés, Lacs médocains et Boutonne.

Les contrats de milieux

Institué par la circulaire du 5 février 1981, le contrat de milieu (rivière, lac, nappe, baie..) est un outil de contractualisation technique et financier entre partenaires concernés pour une gestion globale des milieux aquatiques à une échelle hydrographique cohérente.
Présentation du district hydrographique Adour-Garonne

Comme les SAGE, les contrats déclinent les objectifs majeurs du SDAGE sur leur bassin versant et fixent des objectifs de qualité des eaux, de valorisation du milieu aquatique et de gestion équilibrée des ressources en eau. Beaucoup de contrat de rivières comportent un volet inondations dont le contenu est variable. Ce volet inondation correspond parfois au programme d’action du PAPI du même territoire qui est dans ce cas porté en général par la même structure.

À la différence des SAGE, ils n’ont pas de portée juridique et leur objet essentiel est d’aboutir à un programme d’actions de réhabilitation et de gestion d’un milieu. SAGE et contrat de milieu sont donc deux outils complémentaires, l’un établissant un projet commun pour l’eau assorti de règles de bonne conduite, l’autre permettant le financement d’actions.

Le programme d’action d’un contrat de rivière est piloté par un comité de rivière représentant l’ensemble de partenaires concernés : structure porteuse, préfet de département, agence de l’eau, collectivités territoriales.

La durée moyenne d’un contrat de milieu est de 5 ans.

Le bassin Adour Garonne compte en octobre 2011 (cf. illustration 10):
- 6 contrats de milieu en cours d’exécution : Haute dordogne, Viaur (2ème contrat), Tarn, Gave de Pau, Tarn amont et Dordogne atlantique ;
- 2 contrats en phase d’élaboration : Lot aval et Haut Adour ;

Articulation avec les politiques d’aménagement du territoire et d’urbanisme

Le Schéma de Cohérence Territoriale (SCoT)

Le schéma de cohérence territoriale (SCoT), créé par la loi du 13 décembre 2000 relative à la solidarité et au renouvellement urbain et confirmé par la loi « urbanisme et habitat » du 2 juillet 2003, est un outil de conception et de mise en œuvre d’une planification intercommunale.

Il définit l’évolution d’un territoire au travers d’un projet d’aménagement et de développement durable. Il a pour objectif de servir de cadre aux différentes politiques sectorielles, notamment celles de l’habitat, des déplacements, des équipements commerciaux, de l’environnement, de l’organisation d’espace.

Il doit assurer ainsi la cohérence des documents sectoriels (Programme Local de l’Habitat, Plan de Déplacements Urbains, Schéma de Développement Commercial) et des documents d’urbanisme établis au niveau communal (Plan Locaux d’Urbanisme et Cartes Communales).

Ces documents devront en effet être compatibles avec le SCOT.
Présentation du district hydrographique Adour-Garonne

S’inscrivant dans une vision prospective partagée par les acteurs de l’aménagement du territoire à l’interface des différentes politiques sectorielles qui y sont mises en oeuvre, le SCoT est un outil approprié pour évaluer les conséquences socio-économiques des conséquences d’une inondation. Il s’avère également adapté pour intégrer la prévention des risques d’inondations au cœur de la démarche de développement d’un territoire.

Porté par les collectivités territoriales, le SCoT est un outil judicieux pour mettre en adéquation l’aménagement du territoire avec son exposition au risque. Le diagnostic de territoire intégré à la démarche est l’occasion d’identifier et de caractériser l’impact des inondations touchant les biens, les services, les enjeux stratégiques, les politiques conduites par les collectivités mais aussi les projets qu’elles veulent mener en commun.

Par ailleurs, l’État a engagé, auprès de 12 SCoT français représentatifs de la diversité des contextes locaux, une démarche d’accompagnement des thèmes impulsés par le Grenelle de l’environnement - dont la gestion des inondations fait partie. Cette démarche intitulée « SCoT-Grenelle » consiste à capitaliser et diffuser les pratiques, savoir-faire et expériences jugés intéressants, tout en revisitant les préconisations méthodologiques faites jusqu’ici.
Présentation du district hydrographique Adour-Garonne

En outre, il convient de rappeler que le Plan national Submersions Rapides (PSR) prévoit d’encourager l’émergence de stratégies locales intercommunales de prévention qui seront traduites via les Schémas de Cohérence Territoriale. A cet effet, il prévoit de soutenir financièrement les phases d’étude de stratégies de réduction des risques pour des territoires littoraux via 3 SCoT expérimentaux exemplaires en matière de prise en compte des risques, un par façade littorale.

La carte de l’illustration 11 représente le nombre de démarches SCOT engagées sur le bassin Adour Garonne.

Impliquer les collectivités via les Établissements Publics Territoriaux de Bassin

A travers l’article L.213-10 du Code de l’Environnement, l’État a donné aux collectivités locales la possibilité de s’organiser pour mener leur politique des gestion des inondations : « pour faciliter, l’échelle d’un bassin ou d’un sous-bassin hydrographique, la prévention des inondations et la gestion équilibrée de la ressource en eau ainsi que la préservation et la gestion des zones humides, les collectivités territoriales intéressées et leurs groupements peuvent s’associer au sein d’un établissement public territorial de bassin ».

Structures disposant des capacités suffisantes pour assurer la maîtrise d’ouvrage d’actions interdépartementales et inter-régionales, les EPTB sont des acteurs centraux pour assurer la mise en œuvre d’une politique de gestion globale cohérente à l’échelle de grands bassins versants.

Illustration 12: Les EPTB en France et en Adour Garonne

En plus de transposer la directive inondations en droit français, l’article 221 de la Loi du 13 juillet 2010 portant engagement national pour l’environnement (LENE) renforce également le rôle des EPTB dans la gestion des inondations pour « assurer à l’échelle du bassin ou sous-bassin hydrographique de leur compétence, la cohérence des actions des collectivités territoriales et de leurs groupements visant à réduire les conséquences négatives des inondations sur les territoires [à risques d’inondations importants (TRI)], par leur rôle de coordination, d’animation, d’information et de conseil pour des actions de réduction de la vulnérabilité aux inondations ».
Présentation du district hydrographique Adour-Garonne

Les EPTB sont ainsi vu par la LENE comme un acteur central de la mise en œuvre de la directive inondations dans le bassin et plus particulièrement de la déclinaison du futur PGRI dans les stratégies locales.

Le bassin Adour Garonne dénombre 5 EPTB reconnus pour les bassins de la Charente, de la Dordogne, du Lot, de l'estuaire de la Gironde et de l'Adour et un ETPB « assimilé », pour le bassin de la Garonne.
Évaluation des conséquences négatives des inondations

(Principaux résultats à l'échelle du bassin)
Évaluation des conséquences négatives des inondations
Évaluation des conséquences négatives des inondations

Objectifs et principes généraux de l'évaluation

L'évaluation préliminaire des risques d'inondation, mise en œuvre pour chacun des districts hydrographiques, a pour objectif d'évaluer les risques potentiels des inondations sur la santé humaine, l'environnement, le patrimoine culturel et l'activité économique. Elle s'appuie sur les informations disponibles et en particulier sur les informations sur les inondations du passé.

L'EPRI constitue le premier état des lieux de l'exposition au risque inondation réalisé sur l'ensemble du territoire français. Il s'agit avant tout de partager un diagnostic commun à l'ensemble du territoire, visant les conséquences potentielles des phénomènes extrêmes. L'approche retenue vise à identifier les enjeux potentiellement exposés à ces phénomènes. Ces enjeux sont rarement appréhendés comme des indicateurs d'impacts dans notre politique de gestion des risques qui, jusqu'alors, s'intéresse davantage à la réduction de l'aléa qu'à l'évaluation de ses conséquences.

Cette évaluation, sur laquelle se basera la stratégie nationale de gestion du risque inondation, se doit d'être homogène à l'échelle nationale.

Les conséquences potentielles des inondations, objet du présent chapitre, sont appréciées à travers différents types d'informations :

- l'analyse des événements du passé et de leurs conséquences :

 Les événements d'inondation passés significatifs en terme d'impacts ont été identifiés à partir des informations disponibles au sein des services de l'État. Certains de ces événements ont été choisis pour illustrer les types de phénomènes et d'impacts, la liste des événements identifiés et leurs caractéristiques étant reportée en Annexe.

 En parallèle de l'élaboration de l'EPRI, une base de données nationale regroupant l'ensemble de la documentation sur ces événements est en cours de constitution et sera progressivement renseignée pour approfondir et capitaliser la connaissance des événements passés.

- l'évaluation des impacts potentiels des inondations futures :

 Cette évaluation est mise en œuvre de manière systématique pour les débordements de cours d'eau (y compris les petits cours d'eau et les cours d'eau intermittents) et les submersions marines.

Afin d'assurer l'homogénéité de l'évaluation de ces impacts, le principe de la construction d'un socle national d'indicateurs d'impacts a été retenu, sur la base de deux critères :

- disponibilité d'informations les plus complètes et homogènes que possible au niveau national. Ainsi, certaines bases de données disponibles au niveau local n'ont pas été reprises dans le socle national ; elles pourront cependant être valorisées pour un apport complémentaire d'informations qualitatives.

- pertinence de l'indicateur pour illustrer l'exposition au risque de l'une des quatre catégories d'enjeux (santé humaine, environnement, patrimoine culturel et activité économique).

Ce tronc commun de l'évaluation de l'impact potentiel des inondations, constitué majoritairement d'indicateurs quantitatifs, est complété par la connaissance locale qui permet de rendre compte des spécificités de certains enjeux ou phénomènes, et d'intégrer des analyses qualitatives et expertes.

L'objectif d'homogénéité de l'approche a conduit à utiliser des méthodes simplifiées. Les indicateurs du socle national sont ainsi calculés selon le principe suivant :

- caractérisation d'une emprise potentielle des événements extrêmes avec des méthodes simplifiées : l'enveloppe approchée des inondations potentielles (EAIP),

- comptage des enjeux de différentes natures dans cette emprise.
Évaluation des conséquences négatives des inondations

Cette évaluation des impacts directs des événements extrêmes ne peut ainsi être considérée que comme une première approche simplifiée de la vulnérabilité du territoire examiné :

- les caractéristiques de l'aléa (intensité, cinétique, probabilité d'atteinte) ne sont pas prises en compte,
- les indicateurs proposés ne prennent en compte ni la vulnérabilité intrinsèque des enjeux, ni leur évolution dans les décennies à venir,
- les impacts indirects ne sont pas quantifiés.

Pour les types d'inondations pour lesquels il n'est pas possible à ce stade de fournir une enveloppe des inondations potentielles, tels que les ruissellements en versant ou les ruptures de barrages par exemple, ces indicateurs ne sont pas calculés. Seule la connaissance disponible est prise en compte.

Les méthodes employées et les résultats obtenus comportent certaines limites qui sont clairement explicitées dans les paragraphes suivants. Ils constituent cependant l'analyse la plus complète et la plus détaillée du risque inondation à l'échelle nationale qui ait été réalisée à ce jour.

Le présent chapitre présente une synthèse des résultats de cette évaluation à l'échelle du bassin. Le détail et l'analyse de ces résultats, complétés par les connaissances locales, sont présentés ensuite pour chacune des unités (cette décomposition en unités ayant vocation à faciliter la lecture du présent document).
Évaluation des conséquences négatives des inondations

Principaux événements marquants d’inondations

Nous avons retenu un événement pour illustrer chacun des six types de crues et inondations. Ils seront plus amplement détaillés dans les unités de présentation concernées (cf illustration 14).

<table>
<thead>
<tr>
<th>Régime hydro-climatique</th>
<th>Type de submersion</th>
<th>Événement</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crue océanique</td>
<td>Débordement de cours d’eau</td>
<td>Crue de la Garonne et de ses affluents</td>
<td>23 et 24 juin 1875</td>
</tr>
<tr>
<td>Crue méditerranéenne ou cévenole</td>
<td>Torrentiel</td>
<td>Crue des cours d’eau du Haut-Bassin Ariégeois</td>
<td>3 octobre 1897</td>
</tr>
<tr>
<td>Crue océanique</td>
<td>Débordement de cours d’eau</td>
<td>Crue du Tarn et du Lot</td>
<td>mars 1927</td>
</tr>
<tr>
<td>Crue méditerranéenne ou cévenole</td>
<td>Débordement de cours d’eau et Ruissellement</td>
<td>Crue du Tarn et de la Garonne</td>
<td>3 au 5 mars 1930</td>
</tr>
<tr>
<td>Régime océanique</td>
<td>Submersion marine</td>
<td>Tempête Xynthia</td>
<td>27 et 28 février 2010</td>
</tr>
</tbody>
</table>

Tableau 2: Inondations marquantes retenues pour le district Adour-Garonne

Ces événements ont affecté le district Adour-Garonne avec des intensités, des localisations spatios-temporelles très variées. Ils ont eu aussi des conséquences sur les politiques de gestion et de prévention. Les crues de juin 1875 et mars 1930 ont touché une grande partie du district avec, pour chacun de ces deux épisodes, plusieurs centaines de morts. Les hauteurs d’eau atteintes alors constituent toujours la référence pour de nombreux sites urbains. Beaucoup plus restreinte géographiquement mais à l’origine de très importants dégâts la crue de 1897 a impulsé une meilleure prise en compte des risques torrentiels dans l’aménagement du territoire.

Crue de la Garonne et de ses affluents de juin 1875

![Illustration 13: inondation du 23 juin 1875 à Toulouse (source : DREAL Midi Pyrénées)](image)

La crue de juin 1875, bien qu’ancienne, reste un des événements les plus marquants du district.
Évaluation des conséquences négatives des inondations

Elle est en beaucoup d’endroits à l’origine des plus hautes eaux connues à ce jour : Toulouse 8.32 m au Pont Neuf, 11.39 m à Marmande avec des débits importants (350 m³/s à Tarbes). Elle se caractérise également par son emprise spatiale. Outre la Garonne elle-même, nombre de ses affluents connaissent une crue remarquable (Adour, Lot, Tarn...). Les dommages sont énormes. A Toulouse, on déplore plus de 200 décès et la destruction de plus d’un millier de maisons.

L’événement a déclenché à l’époque une prise de conscience générale. Il a favorisé la mise en place à l’échelle régionale et nationale de nouveaux dispositifs de surveillance des cours d’eau (annonce des crues) et constitue aujourd’hui encore la référence dans de nombreux plans de prévention du risque inondation.

Illustration 14: Localisation des inondations marquantes sur le district Adour-Garonne (source : BD Carthage)
Évaluation des conséquences négatives des inondations

Crue torrentielle du 3 octobre 1897

Les origines méditerranéennes de la crue d’octobre 1897 sont indéniables, notamment en raison de la violence et de l’aire d’action relative du phénomène. L’inondation affecte les hauts bassins ariégeois jusqu’à la plaine de Pamiers.

A Mérens c’est le secteur Coune Crabère-Canals qui alimente en matériaux le Saint-Thouret, qui dévaste ses rives et celles du Nabre dans lequel il se jette en amont du village. Ce phénomène provoque la première demande par la commune auprès de l’administration forestière de l’endiguement du Saint-Touret.

A Verdun, le torrent des Moulines connaît une réplique comparable à l’événement de 1875. Le rec de Gascou est plus particulièrement actif. Il érode fortement ses berges et forme une lave torrentielle. Par chance, il n’y a aucune victime.

La vallée de Siguer n’est pas épargnée. Un éboulement sur le haut versant au niveau du ravin de la Pourrenque est à l’origine d’une première lave torrentielle vers 11 h. A 14 h, une seconde se forme, nourrie par deux nouveaux éboulements un peu en aval du premier et par un troisième dans le ravin de Boulimborde. La coulée débouche sur le cône de Canarilles, atteint Siguer et se dilue finalement dans le Vicdessos. Sur son passage, elle détruit cinq granges, dévaste quatre maisons à Canarilles et quatre autres à Siguer. Douze hectares de terrains sont recouverts par quelques 200 000 m³ d’alluvions et de blocs.

Plus en aval, les ponts de Sinsat et Ussat sont détruits ainsi que le moulin de Larcat, les digues des moulins d’Albiès et du pont neuf à Pamiers. Plusieurs quartiers de la cité sont submergés et les importants ouvrages de défense édifiés après la crue de 1875 détruits.

La catastrophe de 1897 est à l’origine de diverses mesures de protection. Les communes de Verdun, Aston, Arnave et Mongaillard sollicitent des subventions pour la défense des habitations, et celles de Villeneuve-de-Paréage, Montaud et le Vernet pour la restauration des berges.

Crue du Tarn et du Lot de mars 1927

La crue de mars 1927 est une crue océanique classique. Elle a avant tout impacté les territoires situés en aval des confluences du Tarn et du Lot. L’absence de perturbations importantes sur les Pyrénées explique l’apport modéré des rivières du Lannemezan et de Haute-Garonne. Ce qui n’est pas le cas pour les grands affluents centraux de la rive droite.
Évaluation des conséquences négatives des inondations

Les hauteurs atteintes par les eaux sont remarquables en plusieurs endroits. L’Agout s’élève fortement (2.90 m à Castres) tandis qu’à Saint-Sulpice le Tarn atteint la cote 9.35 m. C’est sur le Lot que les élévations sont les plus extraordinaires. Les maximaux de 1875 ont été approchés sans être toutefois franchis. On relève 7.10 m à Capdenac (Lot), 7.90 m à Cahors (Lot), 12.6 m à Villeneuve-sur-Lot, 7.10 m à Montauban (Tarn-et-Garonne), 7.52 m à Moissac (Tarn-et-Garonne), 10.90 m à Marmande (Lot-et-Garonne, 11.39 m en 1875), 7.74 m à La Réole (Gironde).

Malgré l’ampleur de l’événement, on déplore le décès de seulement trois personnes à Moissac. En revanche les dommages sont considérables, notamment à La Réole où des digues ont cédé.

Crue du Tarn et de la Garonne des 3 et 4 mars 1930

L’événement est localisé sur l’aval du bassin. Le Tarn en est l’origine principale. La Garonne connaît une crue importante à partir d’Agen. Les hauteurs d’eau de 1875 sont par endroits dépassées.

A partir du 28 février, un anticyclone se positionne entre les Iles Britanniques et les Balkans, alors qu’une dépression est centrée sur la péninsule ibérique. Du 1er au 3 mars le système génère un flux doux et humide de sud-est en provenance de Méditerranée qui balaye le sud ouest de la France et vient buter contre les reliefs du Massif Central.

La violence de la crue s’explique par un ensemble de facteurs. Les pluies n’ont cessé depuis l’automne précédent et à partir de janvier une bonne partie des sols est saturée d’eau. Les cumuls de précipitations sont très importants. D’octobre 1929 à février 1930, on relève 1 177 mm à Lodève, 840 mm à Florac et 533 mm à Castres (pour des moyennes climatologiques respectivement de 541, 474 et 312 mm). Du 1er au 3 mars les cumuls de précipitations dépassent 200 mm sur un territoire allant de la Montagne Noire au sud du Larzac et jusqu’au sud-ouest de Castres. En montagne, la remontée des températures associée aux fortes pluies entraîne une fusion très rapide du manteau neigeux (de 20 à 100 cm) encore présent au-dessus de 600 m.

Le Tarn atteint la cote de 9.1 m à Albi et 19.5 m à Saint-Sulpice, pour un débit maximum estimé à 6 500 m³/s ce qui correspond à une crue de période de retour voisine de cent ans.

Le bilan est très lourd. On dénombre 210 morts, 10 000 sinistrés, près de 3 000 maisons détruites ainsi que des dizaines d’ouvrages d’art.
Crue des 25 et 26 mai 2008 sur le bassin de la Dordogne

Les conséquences de cet événement auraient pu être bien plus graves s’il ne s’était produit un dimanche à midi, jour de la fête des mères, avec un trafic routier très réduit. Sur Urval, certains automobilistes étrangers à la commune sont recueillis par la commune. Les principaux dommages concernent les infrastructures, en premier lieu le réseau routier secondaire coupé ou détruit.

Des détails plus nombreux sont apportés dans l’unité de présentation Dordogne.

Submersion marine des 27 et 28 février 2010 (Xynthia)

Le district Adour-Garonne dispose d’une importante zone littorale. Les récents événements tels que la tempête Martin en 1999, et, plus encore, Xynthia en 2010, nous rappellent la vulnérabilité des zones côtières aux submersions marines.
Évaluation des conséquences négatives des inondations

La zone de formation de la tempête Xynthia et sa trajectoire sont atypiques. Elle trouve son origine dans une dépression atlantique de très basse latitude qui se renforce en fin de journée du 27 février. Les vents balayent alors la Galice et le Pays Basque espagnol. Elle touche les côtes atlantiques françaises dans la nuit du 27 au 28, lors du creux dépressionnaire maximum, avant de poursuivre sa route vers le nord de la France puis l’Angleterre, l’Allemagne et les Pays Bas.

On enregistre des rafales en plaine jusqu’à 160 km/h sur le littoral et de 120 à 130 km/h dans l’intérieur des terres. L’événement météorologique a coïncidé avec une marée de vives-eaux coefficient 102 (maximum de 120 pour les plus hautes marées) et une forte houle comprise entre six et sept mètres générant une surcote de 1.50 m à La Rochelle.

Les périodes de retour associées aux niveaux extrêmes atteints sont supérieures à cent ans à La Rochelle, aux Sables-d’Olonne et à Saint-Nazaire, et à plus de 50 ans à la Pointe-de-Grave, parfois même jusqu’à 100 ans (selon monographie CETE).

Au total, la tempête Xynthia balaye une large bande du territoire allant de la Charente-Maritime aux Ardennes, et provoque le décès de 53 personnes (dont 29 en Vendée et 11 en Charente-Maritime) et d’importants dégâts matériels. Leur montant est évalué à 1.5 milliard d’euros pour les assureurs.
Impacts potentiels des inondations futures

Évaluation des zones concernées par les phénomènes de débordement de cours d'eau, submersions marines et remontées de nappes

Constitution des EAIP « cours d'eau » et « submersion marine »

Objectifs, principes généraux et limites

L'objectif poursuivi est de pouvoir calculer les indicateurs d'impacts sur l'emprise potentielle des événements extrêmes. Il s'agit donc d'abord d'approcher le contour de ces événements en mobilisant en premier lieu l'information immédiatement disponible (atlas, cartes d'aléas des PPR, etc.), et en la complétant si nécessaire par des études complémentaires.

Les Atlas des Zones Inondables (AZI) réalisés par l'approche hydrogéomorphologique ou les contours d'inondations historiques extrêmes par exemple peuvent donner une bonne approche des événements extrêmes recherchés, et ont été utilisés chaque fois qu'ils étaient disponibles sur les cours d'eau.

Lorsque la seule connaissance disponible porte sur des événements centennaux ou inférieurs, ou lorsque la connaissance des zones inondables est inexistante, un complément d'information a été apporté par des méthodes simplifiées basées sur l'analyse de la géologie et de la topographie.

Deux enveloppes approchées des inondations potentielles (EAIP) ont ainsi été élaborées sur l'ensemble du territoire national :

- EAIPc pour les inondations par débordements de cours d'eau, y compris les débordements des petits cours d'eau à réaction rapide (thalwegs secs), les inondations des cours d'eau intermittents et les inondations des torrents de montagne (à partir d'une superficie de bassin versant de quelques km²),
- EAIPsm pour les inondations par submersions marines.

Pour élaborer les EAIPc et EAIPsm, l'effet des ouvrages hydrauliques (barrages et digues de protection) n'est pas considéré (on considère les ouvrages comme transparents). Ainsi ces deux EAIP intègrent également les inondations potentielles par rupture de digues de protection. Les EAIPc et EAIPsm intègrent les zones inondées presque permanentes comme les lits mineurs, estuaires, lacs, étangs...

Avertissements et limites :

La méthode employée génère des incertitudes qui peuvent être, selon les secteurs, relativement importantes (surestimation des emprises, ou au contraire à sous estimation). Les EAIP, qui fusionnent des sources d'information d'échelle et de précision variables, doivent être considérées avec précaution. Les EAIP ne constituent pas une cartographie de zones inondables au sens administratif ou réglementaire et sont donc à ne pas confondre avec les documents suivants :

- les plans de prévention des risques naturels prévisibles d’inondations ou littoraux,
- les atlas des zones inondables ou submersibles,
- la cartographie des surfaces submersibles et des risques d’inondation qui devront être réalisées dans la seconde étape de la mise en œuvre de la directive inondation.

Les EAIP ne peuvent donc pas être utilisées dans les procédures administratives ou réglementaires. En outre, étant données les échelles des données mobilisées, les EAIP ne doivent pas être utilisées à une échelle supérieure au 1/100 000.

Par ailleurs, ces enveloppes ne permettent pas de qualifier l’intensité des phénomènes potentiels. Or les conséquences des phénomènes peuvent être très différentes selon en particulier la cinétique des événements (délai d’alerte) et leur intensité (hauteurs, vitesses de submersion par exemple).

En prenant en compte ces limites, les EAIP constituent aujourd'hui la donnée la plus complète pour évaluer à l'échelle des bassins et à l'échelle nationale les conséquences potentielles des inondations extrêmes.
Évaluation des conséquences négatives des inondations

Phénomènes considérés, données et hypothèses mobilisées pour l'EAIP « cours d'eau »

L'EAIP « cours d'eau » représente l'emprise potentielle des débordements de cours d'eau, y compris les petits cours d'eau à réaction rapide, les cours d'eau intermittents et les thalwegs secs, ainsi que les torrents de montagne. On peut également faire l'approximation que l'emprise obtenue contient les emprises potentielles des inondations suite à des ruptures de digues de protection contre les inondations.

L'EAIP cours d'eau ne prend pas en compte les ruissellements en versant (coulées de boues et ruissellements localisés en dehors des thalwegs) ainsi que les phénomènes spécifiques liés à la saturation locale des réseaux d'assainissement en milieu urbain. Néanmoins, la méthodologie proposée permet de tenir compte de certaines de ces inondations urbaines, dès lors qu'elles sont associées à des thalwegs fortement urbanisés, qu'ils soient ou non drainés par un système d'assainissement ou de gestion des eaux pluviales.

L'enveloppe approchée des inondations potentielles pour le débordement de cours d'eau est construite en fusionnant les informations suivantes pour dessiner une emprise :

- la synthèse de l'ensemble de la connaissance cartographique disponible au format SIG concernant les zones inondables au sein des services de l’Etat (AZI, PPRi, autres données locales : données historiques, études diverses...),
- des informations qui ont permis de compléter les données existantes, soit pour en combler les manques (cours d’eau pour lesquels aucune connaissance n’est disponible), soit pour prendre en compte des événements plus importants que ceux connus (cas où la seule connaissance disponible est inférieure ou égale à un événement centennal). Ces compléments sont constitués :
 - d’une part des informations disponibles sur la géologie : la couche des alluvions récentes donne dans la plupart des cas des indices intéressants d’inondabilité pour les cours d’eau importants ;
 - d’autre part de l’évaluation des zones basses hydrographiques, résultat de l’application d’une méthode à grand rendement géographique : la méthode EXZECO (extraction des zones d’écoulement – application développée par le CETE Méditerranée et mise en œuvre conjointement avec le CETMEF). Cette méthode permet de compléter l’information principalement pour les têtes de bassin non couvertes par la connaissance actuelle, pour lesquelles les cartes géologiques fournissent peu ou pas d’information. Basée sur une approche topographique, elle permet d’identifier les thalwegs drainant une superficie supérieure à un seuil donné.

Les digues de protection contre les inondations ont été considérées comme transparentes pour l'élaboration de l'EAIP. Ce scénario permet de considérer également les zones qui, bien que protégées pour certaines catégories d'événements, pourraient être submergées en cas de défaillance des ouvrages ou d'événement extrême supérieur à l'objectif de protection. L'approximation faite est que le potentiel sur-aléa causé par la rupture d'une digue de protection est contenu dans l'emprise de l'EAIP. L'EAIP considérant ces ouvrages transparents englobe donc autant que possible les effets d'une potentielle rupture d'ouvrage de protection.

Les impacts potentiels du changement climatique sur les inondations par débordement de cours d'eau ne sont pas pris en compte dans la constitution de l'EAIP cours d'eau, étant donné qu'aucune tendance claire ne se dégage (cf Annexe - référence1).

Une fois l'ensemble des informations recueillies au niveau du bassin, une analyse critique a été réalisée par les DREAL avec l’appui du réseau des CETE pour constituer l’enveloppe approchée des inondations potentielles. Les couches géologiques, ou des zones fournies par Exzeco en particulier ont été écartées si les connaissances existantes montraient que ces enveloppes sont bien supérieures aux événements extrêmes.

Phénomènes considérés, données et hypothèses mobilisées pour l'EAIP « submersion marine »

L'EAIP « submersions marines » représente l'emprise potentielle des inondations par submersions marines et rupture d'ouvrages de protection contre les submersions marines.

L'EAIP ne prend pas en compte les tsunamis, ni l'érosion du trait de côte en particulier sur les côtes rocheuses, qui peut entraîner d'autres types de risques.
Évaluation des conséquences négatives des inondations

L'enveloppe approchée des inondations potentielles « submersions marines » assemble les trois types d'informations ci-dessous pour dessiner une emprise :

- la synthèse de l'ensemble de la connaissance cartographique disponible au format SIG concernant les zones inondables par submersions marines au sein des services de l'État (AZI, PPRN submersions marines et assimilés, autres données locales : données historiques, études diverses...)
- l'étude de référence au niveau national « Vulnérabilité du Territoire National aux Risques Littoraux », qui a cartographié les zones topographiques du littoral situées sous un niveau donné, constitué du niveau marin centennal auquel est ajouté un mètre pour la prise en compte des effets du changement climatique. Pour la constitution de ces zones basses littorales, les ouvrages de protection et les protections naturelles de zones basses (cordons dunaires par exemple) ne sont pas pris en considération. Cette approche peut de fait conduire à sur-estimer l'extension des zones concernées. Par ailleurs elle ne fournit ni hauteurs de submersion ni vitesses d'écoulement ;
- des informations sur la géologie (couche des alluvions maritimes récentes) disponibles sur le littoral.

Les ouvrages de protection et les protections naturelles de zones basses (cordons dunaires par exemple) n'ont d'une manière générale pas été pris en considération. Toutefois, dans certaines parties aval des fleuves ou de leurs affluents, des barrages ou des écluses ont été édifiés pour soustraire ces cours d'eau aux intrusions marines et permettre une régulation des zones amont (soutien d'étage, évacuation des crues continentales). Dans certains cas, ces ouvrages assurant une très forte protection sur des territoires situés en amont, ces territoires ont été soustraits de l'enveloppe.

L'impact du changement climatique a été pris en compte dans les résultats de l'étude Vulnérabilité du Territoire National aux Risques Littoraux, en considérant une rehausse du niveau de la mer d'un mètre pour l'ensemble des côtes, Outre-Mer et Méditerranée inclus, en cohérence avec l'hypothèse extrême du GIECC à l'horizon 2100 (cf Annexe -Référence).

Une fois l'ensemble de ces informations recueillies au niveau du bassin, une analyse critique a été réalisée en DREAL pour constituer l'enveloppe approchée des inondations potentielles. Les zones basses littorales en particulier ont pu être écartées ou amendées, pour prendre en compte des données topographiques plus précises ou des niveaux extrêmes différents, ainsi que les couches géologiques (ou une partie de ces couches) si les connaissances existantes montraient qu'elles sont bien supérieures aux événements extrêmes.

Résultats obtenus

La carte ci-après montre l'étendue des EAIP « cours d'eau » et « submersions marines ».

Ces enveloppes se superposent à l'embouchure des cours d'eau. Certains secteurs sont effectivement soumis aux inondations par débordement de cours d'eau et par submersion marine. Il peut néanmoins arriver que l'attribution de la submersion aux deux origines soit le fait des méthodes employées (basées sur l'observation de la topographie et de la géologie, et non des phénomènes), et ne reflète pas la réalité.

L'identification de l'origine précise de la submersion étant cependant quelquefois difficile, une analyse basée sur la connaissance du terrain et des phénomènes pourra être faite si cela s'avère nécessaire lors de l'étape de cartographie, notamment pour les phénomènes d'origine fluvio-maritime.
Évaluation des conséquences négatives des inondations

Illustration 19: EAIP SM et CE sur le bassin Adour Garonne
Évaluation des conséquences négatives des inondations

Évaluation des zones sensibles aux remontées de nappes

Actuellement, les éléments utiles pour établir la carte représentant les zones sensibles aux remontées de nappes n'ont pas pu être rassemblés.

Compte-tenu de la nature des informations représentées, aucun indicateur ne pourra être calculé.

Seules des informations relatives aux dégâts causés par ce type d'aléa seront présentées dans la version actualisée.

Évaluation des impacts potentiels

Objectifs, principes généraux et limites

Le socle national d'indicateurs :

Pour garantir l'homogénéité de l'analyse, un tronc commun d'indicateurs au niveau national a été proposé. Les indicateurs s'appuient donc sur les bases de données disponibles à l'échelle nationale (la plupart des indicateurs est calculée à partir de la BD TOPO® de l'IGN).

Il n'existe pas de base de données rendant compte de la vulnérabilité des différentes cibles de la directive aux risques d'inondation. En revanche des bases de données sur les enjeux existent : bâti, population, routes, ... Pour la construction d'indicateurs, il a été considéré que la simple présence d'un enjeu dans l'EAIP est représentative d'une vulnérabilité, ce qui constitue une approximation plus ou moins fiable selon les critères considérés : sur un nombre important d'enjeux (la population par exemple), on peut considérer l'indicateur comme pertinent. En revanche sur des enjeux très ponctuels (les musées par exemple), le résultat est plus discutable.

Bien que des enjeux hors des EAIP puissent être impactés (effets dominos dus par exemple aux impacts sur les réseaux), aucune méthode simple n'existe aujourd'hui pour les qualifier. L'analyse se limite à l'EAIP uniquement et aux enjeux directement impactés.

Enfin, l'évolution prévisible de l'implantation des enjeux en zone inondable dans les prochaines décennies n'est pas prise en compte dans le calcul de ces indicateurs. Elle est appréciée localement en complément des résultats obtenus.

Cette évaluation présente donc certaines limites, la première étant que les indicateurs communs peuvent ne pas refléter au mieux certaines situations locales. En outre, les indicateurs proposés ne permettent qu'une évaluation sommaire de la vulnérabilité des enjeux comptabilisés. Il s'agit par ailleurs d'une analyse de la situation actuelle, sans étude prospective sur les décennies à venir.

Toutefois, les résultats de ces indicateurs constituent la donnée la plus complète à l'échelle nationale pour l'évaluation des impacts potentiels des inondations extrêmes, nécessaire à la vision d'ensemble homogène recherchée pour l'EPRI.

Ces indicateurs sont calculés, sauf indication contraire, à l'échelle de la commune.

La connaissance locale permet de compléter ces premiers éléments d'appréciation.

Impacts potentiels sur la santé humaine

Les impacts des inondations sur la santé humaine peuvent être très différent selon les phénomènes d'inondation, et selon leur intensité et leur cinétique.

Les premiers effets des inondations sur la santé comprennent le décès par noyade mais également les accidents liés à la situation de crise (chutes, électrocution, etc.). Ces risques de décès ou de blessures sont d'autant plus importants que les hauteurs et les vitesses de submersion sont importantes, et que les phénomènes se produisent rapidement.

Les phénomènes plus lents et aux hauteurs de submersion moins élevées induisent certes un risque de mortalité plus faible, mais peuvent cependant présenter des risques pour la santé humaine, au niveau physique (problème d’approvisionnement en eau potable…) mais aussi psychologique, notamment du fait de la durée pendant lesquels les logements sont rendus inhabitables, des ruptures d'activités pouvant entraîner des pertes d'emplois, etc.
Évaluation des conséquences négatives des inondations

En outre, les inondations peuvent avoir des conséquences indirectes sur la santé humaine par le biais du dysfonctionnement des services publics tels que la santé, la prise en charge sociale, l'éducation, qui peuvent être impactés en cas d'événement majeur.

Les impacts potentiels des inondations sur la santé humaine ont été évalués à partir des indicateurs suivants, qui prennent seulement en compte la population directement impactée (en nombre, en densité, en proportion, en type d'habitat, en accès aux soins), sans distinction selon la gravité des phénomènes d'inondation :

- La population habitant dans l'EAIP. La population dans les zones concernées est le principal indicateur d'impact sur la santé humaine mais indique également une vulnérabilité de l'activité économique. Le nombre d'habitants à l'intérieur de l'EAIP cours d'eau est calculé pour chaque commune, de même pour l'EAIP submersion marine, à partir des résultats du recensement 2006 de l'INSEE (pour les communes concernées par les deux phénomènes, les habitants sont donc comptabilisés deux fois). Le calcul prend en compte l'ensemble des résidents permanents habitant dans l'EAIP (quelque soit le nombre d'étages de l'immeuble), mais ne prend pas en compte la population saisonnière.

- La densité de population dans l'EAIP ou en bordure de l'EAIP. Cette carte fournit la densité de population (à partir de la carte nationale produite par l'INSEE), représentée uniquement sur l'emprise des EAIP cours d'eau et submersion marine. Étant donnée l'échelle de représentation de la densité de population (le pixel de 1 km²), la densité visible sur l'emprise de l'EAIP peut concerner la population à l'intérieur ou en bordure de l'EAIP.

- La proportion de la population de la commune habitant dans l'EAIP. Cette proportion rend compte de la sensibilité du territoire, et de sa capacité à rétablir une situation normale rapidement après un événement (résilience). Seules les communes dont la proportion de la population habitant dans l'EAIP dépasse les 80% de la population communale sont représentées. Cet indicateur permet de mettre en valeur les communes qui seraient, à leur échelle, très fortement impactées en cas d'événement.

- L'emprise des habitations de plain-pied dans l'EAIP. Cet indicateur permet d'identifier les habitations sans étage situées dans l'EAIP. Cette information est particulièrement importante dans le cas de phénomènes rapides (submersion rapides, ruptures d'ouvrages), car leurs habitants peuvent se retrouver pris au piège dans leur habitation, sans possibilité de se réfugier à un étage hors d'eau. En outre, leurs habitants ne peuvent réintégrer facilement leur logement une fois l'événement passé, de nombreux biens y étant endommagés. L'indicateur est calculé en considérant les bâtiments d'habitation de hauteur inférieure à 4 mètres.

- Le nombre d'établissements hospitaliers dans l'EAIP. La présence d'établissements hospitaliers dans l'EAIP est problématique à double titre : ils peuvent devenir inaccessibles en cas d'inondation, à un moment où le nombre de blessés peut être important, et leur population est particulièrement vulnérable et difficile à évacuer. L'indicateur produit comptabilise le nombre de cliniques et d'établissements hospitaliers dans l'EAIP (les établissements thermaux ne sont pas pris en compte). Étant donnée l'automatisation du calcul, les établissements en bordure de l'EAIP peuvent être comptés ou non selon la position de leur centroïde.
Illustration 20: Population dans l'EAIP Débordement de Cours d'eau
Illustration 21: Population dans l'EAIP Submersion Marine
Illustration 22: Densité de population se trouvant à proximité de l’EAIP Débordement de Cours d’Eau
Évaluation des conséquences négatives des inondations

Illustration 23: Densité de population se trouvant à proximité de l’EAIP Submersion Marine
Évaluation des conséquences négatives des inondations

Illustration 24: Communes dont 80 % de la population se situe à proximité de l'EAIP CE
Illustration 25: Communes dont 80 % de la population se situe à proximité de l’EAIP SM
Évaluation des conséquences négatives des inondations

Illustration 26: Emprise des habitations sans étages dans l'EAIP CE
Évaluation des conséquences négatives des inondations

Illustration 27: Nombre d'établissements hospitaliers dans l'EAIP CE
Illustration 28: Nombre d'établissements hospitaliers dans l'EAIP SM
Évaluation des conséquences négatives des inondations

Impacts potentiels sur l'activité économique

Les inondations peuvent avoir des impacts négatifs sur différents types d’enjeux liés à l’économie :

- l’ensemble des biens (privés ou publics) en zone inondable peut être atteint directement ;
- les réseaux (de transport, d’énergie, de télécommunication, d’eau...) au delà de leur vulnérabilité physique à l’inondation, sont le plus souvent fortement vulnérables étant donnée leur interdépendance ;
- l’activité économique, dont l’agriculture, peut être particulièrement vulnérable aux inondations. On peut sans être exhaustif citer les différents types d’impacts suivants :
 - pour les activités situées dans les zones inondées : impacts sur les bâtiments, le matériel, les produits stockés, les cultures, qui peuvent conduire à des pertes directes et des pertes d’exploitation,
 - pour l’ensemble des activités : rupture d’activité potentielle suite à la rupture ou au dysfonctionnement des réseaux, à l’indisponibilité des personnels inondés, au défaut de fonctionnement d’un fournisseur inondé...

La vulnérabilité des activités dépend également de leur couverture assurantielle, variable selon les différents types de dommages.

L’évaluation de ces impacts potentiels est donc particulièrement complexe étant données ces différentes natures d’atteintes.

Les indicateurs du socle national proposés pour donner une première approche de ces impacts potentiels sont les suivants :

- L’emprise totale du bâti dans l’EAIP. Cet indicateur rend compte de l’importance du bâti présent dans l’EAIP et donc des répercussions potentielles d’une inondation sur les biens.
- L’emprise des bâtiments d’activité dans l’EAIP. Cet indicateur permet d’identifier la part du bâti d’activité dans le bâti total. Il permet surtout de mettre en valeur les zones d’activités et zones industrielles, les activités disséminées dans le tissu urbain n’étant pas comptabilisées.
- Le nombre d’emplois dans l’EAIP : cet indicateur rend compte d’une vulnérabilité de l’activité économique, mais également d’une vulnérabilité de la population. En journée, la population active est située en majorité sur son lieu de travail et non son lieu d’habitation, et peut donc être directement impactée sur celui-ci. Ce calcul est basé sur l’exploitation de la BD Parcellaire, qui est plus ou moins bien géoréférencée selon les communes. L’information produite est donc de qualité médiocre pour un petit nombre de communes (ces dernières sont identifiées sur une carte spécifique pour qualifier la valeur de l’indicateur produit).
- Le nombre d’événements Cat Nat : La loi n° 82-600 du 13 juillet 1982 modifiée relative à l’indemnisation des victimes de catastrophes naturelles a pour but l’indemnisation des biens assurés suite à une catastrophe naturelle par un mécanisme faisant appel à une solidarité nationale. Un même événement d’inondation peut justifier plusieurs arrêtés Cat Nat (au titre de différents types de phénomènes). Les événements d’inondation identifiés comme « Cat Nat » peuvent recouvrir des événements assez fréquents par rapport aux événements extrêmes pris en compte dans le cadre de l’EPRI (une pluie décennale peut justifier un arrêté Cat Nat). Le nombre d’événements « Cat Nat » permet toutefois de donner une indication de la sinistralité d’une commune lors des trente dernières années. Les communes cumulant un nombre d’événements important sont surtout représentatives d’une vulnérabilité économique pour des événements fréquents.
Évaluation des conséquences négatives des inondations

Les linéaires de réseaux de transports dans l'EAIP : ces linéaires sont comptabilisés à l'échelle du bassin, sans analyse de leur vulnérabilité en cas d'inondation (ces voies ne sont pas nécessairement coupées en cas d'inondation) :

- Le linéaire de routes principales : les routes principales constituent des liaisons entre métropoles et départements, constituant l’essentiel du réseau européen. Ce réseau revêt un caractère stratégique.

- Le linéaire de routes secondaires : cet indicateur permet de rendre compte de l’atteinte au réseau « courant ».

- Le linéaire de voies ferrées : les principales voies ferrées permettent des grandes liaisons entre agglomérations et constituent, comme les routes principales, des itinéraires stratégiques. Seules les voies ferrées principales ont été considérées.
Évaluation des conséquences négatives des inondations

Illustration 29: Nombre d'arrêtés CAT NAT pour inondation et coulées de boue
Illustration 30: Nombre d'arrêtés CAT NAT pour Submersion marine
Évaluation des conséquences négatives des inondations

Illustration 31: Emprise du bâti total et du bâti d'activité dans l'EAIP CE
Illustration 32: Emprise du bâti total et du bâti d’activité dans l’EAIP SM
Évaluation des conséquences négatives des inondations

Illustration 33: Nombre d'emplois dans l'EAIP CE
Illustration 34: Nombre d'emplois dans l'EAIP SM
Évaluation des conséquences négatives des inondations

Illustration 35: Fiabilité de l'indicateur emploi
Évaluation des conséquences négatives des inondations

On présente ici les linéaires de routes et de voies ferrées impactées par les EAIP :

<table>
<thead>
<tr>
<th>Bassin hydrographique</th>
<th>Routes principales dans l'EAIP CE</th>
<th>Routes secondaires dans l'EAIP CE</th>
<th>Voies ferrées dans l'EAIP CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adour</td>
<td>545 km</td>
<td>6 527 km</td>
<td>260 km</td>
</tr>
<tr>
<td>Charente</td>
<td>197 km</td>
<td>4 753 km</td>
<td>108 km</td>
</tr>
<tr>
<td>Dordogne</td>
<td>597 km</td>
<td>7 045 km</td>
<td>290 km</td>
</tr>
<tr>
<td>Garonne</td>
<td>1 098 km</td>
<td>11 345 km</td>
<td>330 km</td>
</tr>
<tr>
<td>Lot</td>
<td>325 km</td>
<td>3 195 km</td>
<td>165 km</td>
</tr>
<tr>
<td>Tarn / Aveyron</td>
<td>271 km</td>
<td>4 034 km</td>
<td>120 km</td>
</tr>
<tr>
<td>Littoral Atlantique</td>
<td>142 km</td>
<td>2 485 km</td>
<td>55 km</td>
</tr>
<tr>
<td>ADOUR GARONNE</td>
<td>3 175 km</td>
<td>39 384 km</td>
<td>1 328 km</td>
</tr>
</tbody>
</table>

Tableau 3: Linéaires de réseaux de transport dans l'EAIP CE (en km)

<table>
<thead>
<tr>
<th>Bassin hydrographique</th>
<th>Routes principales dans l'EAIP SM</th>
<th>Routes secondaires dans l'EAIP SM</th>
<th>Voies ferrées dans l'EAIP SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adour</td>
<td>9 km</td>
<td>288 km</td>
<td>26 km</td>
</tr>
<tr>
<td>Charente</td>
<td>52 km</td>
<td>527 km</td>
<td>28 km</td>
</tr>
<tr>
<td>Dordogne</td>
<td>63 km</td>
<td>692 km</td>
<td>14 km</td>
</tr>
<tr>
<td>Garonne</td>
<td>124 km</td>
<td>1 006 km</td>
<td>47 km</td>
</tr>
<tr>
<td>Lot</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tarn / Aveyron</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Littoral Atlantique</td>
<td>100 km</td>
<td>2 070 km</td>
<td>57 km</td>
</tr>
<tr>
<td>ADOUR GARONNE</td>
<td>348 km</td>
<td>4 583 km</td>
<td>172 km</td>
</tr>
</tbody>
</table>

Tableau 4: Linéaires de réseaux de transport dans l'EAIP SM (en km)

Impacts potentiels sur l'environnement

Les inondations, phénomène naturel, ont dans la plupart des cas un impact positif sur l'environnement.

Les lits majeurs et en particulier les zones humides sont souvent des sites d'intérêt écologique fort et sont des milieux de vie remarquables pour leur biodiversité. Ces espaces naturels sont vulnérables aux inondations lorsque celles-ci affectent des sources de pollution, majoritairement anthropiques.

Étant donné l'objectif de l'EPRI, la caractérisation de ces impacts positifs n'a pas été recherchée.
Évaluation des conséquences négatives des inondations

Pour la caractérisation des impacts négatifs des inondations sur l'environnement, les principales sources de pollution potentielle et les principales zones naturelles protégées ont été identifiées :

- Les installations nucléaires de base dans l'EAIP : ces installations représentent un risque majeur pour les populations et l'environnement en cas de dysfonctionnement, tout en revêtant une importance stratégique pour le territoire national. Les INB comprennent les réacteurs nucléaires, mais également les grandes installations de préparation, d'enrichissement, de fabrication, de traitement ou d'entreposage de combustible nucléaire, les grandes installations comprenant des substances radioactives ou fissiles, et les grands accélérateurs de particules. 126 INB sont comptabilisées au 31/12/2010, sachant que pour des raisons techniques ou juridiques, le nombre d'INB n'est pas automatiquement lié à un nombre de réacteurs (une même usine du cycle de combustible peut recourir plusieurs INB, et une INB peut être composée d'un ensemble de réacteurs).

- Les établissements Seveso seuil haut dans l'EAIP : ces établissements, dont la nature et l'importance des activités ou des substances présentes représentent des risques majeurs pour l'environnement, sont soumis à une réglementation spécifique avec en particulier une maîtrise de l'urbanisation autour des sites. Il en existe plus de 600 sur le territoire national.

- Les établissements IPPC dans l'EAIP : les établissements soumis à la directive dite « IPPC » (pour Integrated Pollution Prevention and Control) sont les installations industrielles ou agricoles à fort potentiel de pollution de l'environnement dans son ensemble (eau, air, sols...). Il en existe environ 6000 en France, toutes natures confondues (industries d'activités énergétiques, production et transformation des métaux, industrie minière, industrie chimique, gestion des déchets, élevage d'animaux, etc.).

- Les stations d'épuration de plus de 10 000 équivalents habitants dans l'EAIP. Les stations d'épuration sont généralement construites dans ou en bordure des lits majeurs, et peuvent être vulnérables en cas d'inondation importante.

- Les zones Natura 2000 dans l'EAIP : elles regroupent au niveau européen les sites ayant une grande valeur par la faune et la flore exceptionnelles qu'ils contiennent, dans un objectif de préservation de la biodiversité.

- Les ZNIEFF dans l'EAIP : les zones nationales d'intérêt écologique faunistique et floristique concernent les sites ou les ensembles naturels contenant des espèces végétales ou animales rares et menacées ou des habitats remarquables.

Il n’a pas été fait de sélection des zones protégées les plus sensibles au vu de la proximité d’une source de pollution potentielle. En outre, la vulnérabilité des sites potentiellement polluants et le type de pollution éventuelle n’a pas été pris en compte.
Évaluation des conséquences négatives des inondations

Illustration 36: ZNIEFF et zones Natura 2000 dans l'EAIP CE
Évaluation des conséquences négatives des inondations

Illustration 37: IPPC + Seveso AS + INB + STEP dans l'EAIP CE
Évaluation des conséquences négatives des inondations

Illustration 38: ZNIEFF et zones Natura 2000 dans l’EAIP SM
Évaluation des conséquences négatives des inondations

Illustration 39: IPPC + Seveso AS + INB + STEP dans l'EAIP SM
Évaluation des conséquences négatives des inondations

Impacts potentiels sur le patrimoine

Le patrimoine recouvre le patrimoine culturel (qu’il soit matériel ou immatériel : patrimoine bâti, collections des musées, ...) ou naturel (flore et faune, paysages). Les impacts potentiels des inondations sur ce patrimoine doivent être anticipés, car ce sont des biens irremplaçables.

La vulnérabilité aux inondations du patrimoine naturel est examinée au titre des impacts potentiels sur l'environnement. La vulnérabilité du patrimoine culturel est approchée pour l'EPRI à travers le calcul de la superficie du bâti remarquable dans l'EAIP. Le bâti remarquable est identifié par l'analyse de la BD TOPO® de l'IGN qui permet d'identifier les châteaux, églises, chapelles et bâtiments religieux divers.

Cet indicateur est très restrictif car il ne permet de considérer qu'une partie du bâti constituant notre patrimoine culturel, sans analyse de sa vulnérabilité à l'inondation, et parce qu'il ne prend pas en compte le patrimoine non bâti. Toutefois, il permet d'avoir une première appréciation de certains secteurs sensibles.
Évaluation des conséquences négatives des inondations

Illustration 40: Surface d'édifices remarquables et nombre de musées dans l'EAIP CE
Évaluation des conséquences négatives des inondations

Illustration 41: Surface d'édifices remarquables et nombre de musées dans l'EAIP SM
Évaluation des conséquences négatives des inondations

Autres types d'inondation

Les inondations par rupture d'ouvrages hydrauliques ;

Les inondations par rupture de barrages.

Les rivières du bassin Adour Garonne accueillent de nombreux barrages. Dans l'hypothèse d'une rupture brutale d'un ouvrage, une puissante onde de crue dévastatrice se propagerait rapidement vers l'aval. Afin de garantir la sécurité de ces ouvrages, les barrages sont soumis au décret n°2007-1735 du 11 décembre 2007 relatif à la sécurité des ouvrages hydrauliques et au comité technique permanent des barrages et des ouvrages hydrauliques et modifiant le Code de l'Environnement. Ce décret :

- Définit, en fonction des barrages (« barrages de retenue et ouvrages assimilés, notamment les digues de canaux »): classes A, B, C et D en fonction des caractéristiques géométriques (hauteur par rapport au terrain naturel, volume retenu) ;
- Définit, en fonction de la classe des ouvrages, les obligations réglementaires de leur propriétaire ou exploitant: diagnostic de sûreté des digues existantes, dossier d'ouvrage, fréquence des visites techniques approfondies, auscultations, consignes, revue de sûreté, étude de dangers,...

Certains barrages de classe A font l'objet de l'établissement d'un Plan Particulier d'Intervention (PPI) par l'autorité préfectorale. Selon les termes du décret n°2005-1158 du 13 septembre 2005 relatif au PPI concernant certains ouvrages ou installations fixes et pris en application de l'article 15 de la loi n°2004-811 du 13 aout 2004 relative à la modernisation de la sécurité civile, « les PPI sont établis, en vue de la protection des populations, des biens et de l'environnement, pour faire face aux risques particuliers liés à l'existence ou au fonctionnement d'ouvrages ou installations dont l'emprise est localisée et fixe. Ils mettent en œuvre les orientations de la politique de sécurité civile en matière de mobilisation de moyens, d'information et d'alerte, d'exercice et d'entrainement. Le PPI constitue un volet des dispositions spécifiques du plan ORSEC départemental ».

Sont soumis à PPI « les aménagements hydrauliques qui comportent à la fois un réservoir d'une capacité égale ou supérieure à 15 millions de mètres cubes et un barrage ou une digue d'une hauteur d'au moins vingt mètres au dessus du point le plus bas du sol naturel » : ce 2ème critère « hauteur » est la définition stricte du barrage de classe A au sens du décret du 11 décembre 2007 sus mentionné.

Le préfet peut également prescrire spécifiquement l'élaboration d'un PPI pour les barrages de caractéristiques inférieures à celles mentionnées au paragraphe précédent pour répondre à telle ou telle situation particulière.

La carte ci après figure les barrages de classe A et B situés sur le bassin Adour Garonne.
Illustration 42: Localisation des barrages et digues de classes A et B
Évaluation des conséquences négatives des inondations

Les inondations par rupture de digues

Les digues de protection contre les inondations ou les submersions ont vocation à protéger les populations existantes. Elles permettent notamment, sous réserve d’avoir été conçues dans les règles de l’art et correctement entretenues, d’apporter aux habitants concernés une protection relative contre les événements dont l’intensité est inférieure à celui pour lequel l’ouvrage a été conçu (donc contre les événement statistiquement plus fréquents que l’évènement dimensionnant). Les digues participent à la prévention des risques et réduisent les dommages et coûts pour la collectivité.

Néanmoins, la présence de ces ouvrages, dont la bonne conception et l’entretien rigoureux par la maitre d’ouvrage sont essentiels, ne doit pas faire oublier l’existence d’un risque important pour les événements d’intensité supérieure au dimensionnement de l’ouvrage.

Les digues de protection sont donc à considérer d’une part comme un ouvrage de protection relative (pour certaines crues) et d’autre part, comme un objet de danger potentiel de nature anthropique : aucun ouvrage ne peut être considéré comme infaillible, et les ruptures de digues (par érosion, surverse, glissement,...) se traduisent par des hauteurs d’eau et des vitesses très importantes ainsi que des phénomènes d’érosion très forte.

Tout comme pour les barrages, les digues sont soumises au décret n°20007-1735 du 11 décembre 2007 relatif à la sécurité des ouvrages hydrauliques et au comité technique permanent des barrages et des ouvrages hydrauliques et modifiant le Code de l’Environnement.

Il définit des classes des digues (« digues de protection contre les inondations et submersions et digues de rivières canalisées »): classes A, B, C et D en fonction de la hauteur de l’ouvrage et de la population maximale (y compris saisonnière) résidant dans la zone protégée.

Il définit en fonction de la classe des ouvrages, les obligations réglementaires de leur propriétaire ou exploitant: diagnostic de sûreté des digues existantes, dossier d’ouvrage, fréquence des visites techniques approfondies, auscultations, consignes, revue de sûreté, étude de dangers,...

L’état des connaissances actuelles ne permet pas de disposer d’une cartographie exhaustive et rigoureuse de ces ouvrages à l’échelle du bassin. Les principaux ouvrages identifiés figurent sur la carte précédente.
Évaluation des conséquences négatives des inondations

Les inondations par crue torrentielle

Illustration 43: Communes avec risques de crue torrentielle
Évaluation des conséquences négatives des inondations
Table des illustrations et des tableaux

Liste des Illustrations
Illustration 1: Évaluation des impacts des inondations futures dans l'EPRI : L'enveloppe approchée des inondations potentielles (a), mise en relation avec la densité de la population (b) permet de calculer l'indicateur d'impact de la population dans l'enveloppe approchée des inondations potentielles par débordement de cours d'eau (c)..........................9
Illustration 2: Situation du bassin Adour Garonne en France (source : AERM)......................13
Illustration 3: Régions et départements du bassin Adour Garonne (source : AEAG)................13
Illustration 4: Le relief du bassin Adour Garonne (source : AEAG)..14
Illustration 5: Occupation du sol en Adour Garonne..15
Illustration 6: Les Unités de Présentation du bassin Adour Garonne..................................17
Illustration 7: Les influences météorologiques sur le bassin Adour Garonne......................18
Illustration 8: Crue du Tarn de mars 1930 : Gaillac sous 14 mètres d'eau (source : R. Lambert)...20
Illustration 9: Les PAPI sur le bassin Adour Garonne (appels à projets 2002 et 2007)........24
Illustration 10: SAGE et contrats de rivière sur le bassin Adour Garonne...............................31
Illustration 11: Les ScoT présents sur le bassin Adour Garonne (source : cartoDREAL)…33
Illustration 12: Les EPTB en France et en Adour Garonne..34
Illustration 13: inondation du 23 juin 1875 à Toulouse (source : DREAL Midi Pyrénées)…41
Illustration 14: Localisation des inondations marquantes sur le district Adour-Garonne (source : BD Carthage)..20
Illustration 15: Crue de la Garonne mars 1927 à Marmande (source : wikipedia)..............42
Illustration 16: Village de Reynies après le passage de la crue du Tarn de mars 1930 (source : DDT 82)...44
Illustration 17: Inondation du 25 mai 2008 à Urrval par le ruisseau du Peyrat (source : EPTB Dordogne)...45
Illustration 18: (a) Vue aérienne de la submersion sur l’île de Ré les 27 et 28 février 2010 ; (b) Brèche dans le cordon littoral sur la commune de Sainte-Marie-de-Ré (source : SDIS)...45
Illustration 19: EAIP SM et CE sur le bassin Adour Garonne..50
Illustration 20: Population dans l'EAIP Débordement de Cours d'eau..................................53
Illustration 21: Population dans l'EAIP Submersion Marine...54
Illustration 22: Densité de population se trouvant à proximité de l'EAIP Débordement de Cours d'Eau..55
Illustration 23: Densité de population se trouvant à proximité de l'EAIP Submersion Marine ..56
Illustration 24: Communes dont 80 % de la population se situe à proximité de l'EAIP CE. 57
Illustration 25: Communes dont 80 % de la population se situe à proximité de l'EAIP SM.58
ANNEXES

Illustration 26: Emprise des habitations sans étages dans l'EAIP CE...59
Illustration 27: Nombre d'établissements hospitaliers dans l'EAIP CE...60
Illustration 28: Nombre d'établissements hospitaliers dans l'EAIP SM...61
Illustration 29: Nombre d'arrêtés CAT NAT pour Inondation et coulées de boue..................................64
Illustration 30: Nombre d'arrêtés CAT NAT pour Submersion marine..65
Illustration 31: Emprise du bâti total et du bâti d'activité dans l'EAIP CE...66
Illustration 32: Emprise du bâti total et du bâti d'activité dans l'EAIP SM...67
Illustration 33: Nombre d'emplois dans l'EAIP CE..68
Illustration 34: Nombre d'emplois dans l'EAIP SM...69
Illustration 35: Fiabilité de l'indicateur emploi..70
Illustration 36: ZNIEFF et zones Natura 2000 dans l'EAIP CE...73
Illustration 37: IPPC + Seveso AS + INB + STEP dans l'EAIP CE...74
Illustration 38: ZNIEFF et zones Natura 2000 dans l'EAIP SM..75
Illustration 39: IPPC + Seveso AS + INB + STEP dans l'EAIP SM...76
Illustration 40: Surface d'édifices remarquables et nombre de musées dans l'EAIP CE.....................78
Illustration 41: Surface d'édifices remarquables et nombre de musées dans l'EAIP SM.....................79
Illustration 42: Localisation des barrages et digues de classes A et B..81
Illustration 43: Communes avec risques de crue torrentielle...83

Liste des tableaux
Tableau 1: les étapes de la mise en œuvre de la directive inondation...8
Tableau 2: Inondations marquantes retenues pour le district Adour-Garonne.....................................41
Tableau 3: Linéaires de réseaux de transport dans l'EAIP CE (en km)..71
Tableau 4: Linéaires de réseaux de transport dans l'EAIP SM (en km)..71
Liste des inondations significatives du passé

Les tableaux synthétiques des chroniques de crues sont annexés aux Unités de Présentation correspondantes.
Modalités organisationnelles et techniques pour la réalisation de l'EPRI

Modalités d’information et d’association des parties prenantes pour l’élaboration de l’EPRI

L’EPRI est organisée en 8 volumes :

- 1 volume présentant les généralités du bassin et les éléments à l’échelle de ce territoire;
- 1 volume par Sous Bassin (unité de présentation) détaillant les éléments de l'EPRI à l’échelle de ces territoires.

Les parties prenantes identifiées pour formuler des remarques sur cet EPRI de district Adour Garonne sont les suivantes :

- Les services de l’État ayant contribué au document : les DREAL du bassin, les Services de Prévision des Crues, les Directions Départementales des Territoires (et de la Mer) ;
- Les Établissements Publics Territoriaux de Bassin ;
- Les membres des 7 Commissions Territoriales : Adour, Charente, Lot, Dordogne, Tam – Aveyron, Garonne et Littoral Atlantique ;
- Les membres du Comité de Bassin qui ne feraient pas partie des Commissions Territoriales ;
- Les autres Parties Prenantes.
ANNEXES

L'association des parties prenantes
Les parties prenantes sont invitées à prendre connaissance, puis à compléter l'EPRI selon deux modalités :
- soit elles font partie du Comité Technique qui a élaboré le document ou du groupe de travail qui a été mis en place pour organiser la suite de la mise en œuvre de la DI. Dans ce cas, l'EPRI a déjà été diffusé et des remarques ont été formulées et intégrées dans le présent volume.
- soit, elles font partie des Commissions Territoriales ou du Comité de Bassin. Dans ce cas, une information leur sera donnée lors de la réunion de ces Commissions et les documents correspondants seront proposés en téléchargement à l'adresse : http://drealmp.fr/Directive/EPRI.

L'information du public
Le public sera informé sur l'EPRI une fois que celle-ci aura été signée par voie d'arrêté par le PCB.
Le document sera disponible sur le site internet de la DREAL Midi-Pyrénées, DREAL de Bassin Adour Garonne.

Hypothèses, données et méthodes mobilisées pour la réalisation de l'EPRI
Ces éléments ont vocation à compléter la présentation des principes méthodologiques qui figure dans l'EPRI, en précisant l'origine des données utilisées, les principes des méthodes mobilisées particulièrement pour l'exercice EPRI (les méthodes relatives à la cartographie des zones inondables, plus classiques, ne sont pas rappelées ici), et les hypothèses considérées.

Analyse des inondations du passé
Contexte dans lequel s'inscrit la démarche : la constitution d'une base de données historiques sur les inondations (BDHI)
En introduisant la nécessité de se référer désormais explicitement au passé dans l'évaluation des risques d’inondation, la directive inondation engage à prendre en compte les données sur les événements passés, que ceux-ci soient très anciens (plusieurs siècles) ou très récents (quelques mois, quelques années). Dans ce contexte la France a décidé de mettre en œuvre une politique d’encadrement de ces données ce qui implique que les informations sur les événements à venir soient intégrées aussi au processus global de conservation, de validation et de valorisation des informations du passé.

La constitution d'une Base de Données Historiques sur les Inondations (BDHI) a donc été initiée par le MEDDTL / DGPR à l'occasion de la mise en œuvre du premier cycle de la Directive inondation. La BDHI a vocation à devenir l’outil de référence en matière de connaissance des inondations survenues sur le territoire national.

La BDHI vise à capitaliser et mettre à disposition des services concernés, ainsi que du grand public, les informations sur les inondations passées de tout type et leurs conséquences. Elle couvre l’ensemble du territoire de la France (métropole et DOM) et embrasse toutes les périodes historiques, des plus anciennes aux plus récentes. Ses contenus sont donc amenés à être complétés et enrichis au fil du temps par un travail itératif de capitalisation de l’information.

Il s'agira d'une base documentaire, recensant, localisant et permettant d'avoir accès aux principales informations issues des différents documents traitant des inondations passées et de leurs conséquences. La base intègrera un outil de recherche de l'information sur des critères spatiaux et temporels, et permettra ainsi de faciliter l'élaboration de synthèses sur les principaux événements d’inondation.

La constitution de la BDHI demande d'une part la définition et la programmation du schéma de la base, et d'autre part la recherche, le recueil et la synthèse des données historiques. Ces deux phases ont été engagées en parallèle, la seconde ayant permis d'alimenter directement l'EPRI 2011.

La BDHI accueillera ainsi dès son implémentation en 2012 les premières données disponibles sur les informations historiques, recueillies pour l'EPRI 2011. Elle sera complétée ensuite grâce à la réalisation d’enquêtes historiques spécifiques et par la mise en place d’un dispositif permettant l’intégration des données sur toute nouvelle inondation. Des partenariats spécifiques seront développés à cette occasion avec les universités, les centres de recherche, le monde des archives et le milieu associatif.
Sources mobilisées pour l'analyse des événements du passé dans l'EPRI 2011

L'analyse des inondations du passé pour l'EPRI 2011 a été produite à partir de documents identifiés selon les critères de recherche suivants :

- Les sources documentaires écrites

 L'analyse s'est appuyée exclusivement pour la première échéance sur des sources documentaires écrites (papier ou autres). Elle n'a pas pris pas en compte les témoignages oraux de ceux qui ont vécu directement une inondation sauf si cette information est déjà disponible dans un document écrit. De même pour les données de terrain (laisse, repères ou marques de crue, etc.). D'une manière générale, les documents recensés sont des principaux types suivants :

 - des données brutes d’observation sous forme de graphes, tableaux, registres, photos, bases de données (relevés hydrométriques, PHEC, inventaire de repères de crues, etc.) ;
 - des notes ou rapports de synthèse post-événement (descriptions des phénomènes et de leurs impacts) ou thématiques, rassemblés ou non en dossiers chronologiques ;
 - des études hydrauliques pouvant intégrer des données historiques ;
 - des courriers et notes divers ;
 - des extraits de publications scientifiques, de journaux.

- Les documents conservés dans les services de l'État, ainsi que les principaux documents de référence.

 L'information recueillie lors de cette phase a été tirée en premier lieu des documents conservés dans les services de l'État (services risques, services navigation, police de l'eau, SPC, etc.). La documentation plus fournie, gardée éventuellement dans des salles d'archives ou locaux divers des services, et qui demanderait un investissement en temps plus conséquent, sera intégrée plus tard.

 Dans le but de compléter ce premier corpus de données, un travail particulier de recherche a été mené par un groupe d'experts en 2011 dans le fonds « Inondations » des Archives Nationales sur la période XIe-XXe s. (série F14). De même, un certain nombre d’études et documents de référence a été pris en compte, qu'il s'agisse d'ouvrages de référence au niveau national (comme l'ouvrage Maurice Champion, 1858 « Les inondations en France du VIième siècle à nos jours »), ou des publications références bien connues par bassin et cours d'eau majeurs.

 Les sources extérieures aux services de l'État n'ont pas été mobilisées, en particulier celles détenues par les archives publiques, les bibliothèques, les fonds documentaires spécialisés, les bases de données extérieures, etc... Tout ce qui est déjà disponible en provenance de ces fonds sous forme d'études ou bases de données diverses devra intégrer la BDHI à partir de 2012.

- Les documents et données produits depuis 50 ans.

 Les études, dossiers et données relatifs aux inondations produits au cours des cinq dernières décennies ont été retenus en priorité : études hydrauliques spécifiques, PSS, études pour les PPRI, les AZI, dossiers CAT NAT, relevés hydrométéorologiques, enquêtes sur les repères de crues, etc. Les informations recueillies peuvent concerner des périodes bien antérieures. Pour les cours d'eau principaux et/ou les sites à enjeux, ces documents permettent le plus souvent de disposer d’informations sur les grandes crues du dernier siècle, voire bien au-delà.

Informations recueillies sur les événements

Les événements sont décrits à partir des informations recueillies dans les documents consultés. Outre les informations sur la localisation, la datation, le type de l’inondation et ses aspects météorologiques et hydrogéomorphologiques, la description d’un événement intègre ses impacts (conséquences négatives) sur les différentes catégories d’enjeux : la santé humaine, l’environnement, le patrimoine culturel et l’activité économique.
Sélection des événements significatifs et remarquables

L'ensemble des événements identifiés a fait l'objet d'une analyse pour en extraire les événements significatifs. Ainsi, les inondations de faible ampleur et qui n'ont pas occasionné de dommages notables ont été écartées et ne sont pas reprises dans l'EPRI 2011.

L'ensemble des événements significatifs identifiés à l'échelle du district figure dans les présentes Annexes. Parmi ces événements significatifs, certains événements remarquables ont été sélectionnés pour illustrer les impacts des inondations passées à l'échelle du district, et des unités de présentation :

- dans la partie concernant le district, il s'agit d'événements remarquables en intensité et dommages, et qui illustrent la typologie des types d'inondation sur le district
- pour chaque unité territoriale, il s'agit des 5 à 10 événements les plus marquants et caractéristiques de l'unité territoriale. Les critères de sélections sont :
 - Hydrométéorologiques : intensité-période de retour (cotes et/ou débits maximaux), extension spatiale (inondations étendues a plusieurs bassins ou relatives a des phénomènes météorologiques de grande ampleur), typologie particulière
 - Socio-économiques : impact (classement sur les pertes humaines ou dommages matériels), crues de référence (PPR, AZI), dernière crue majeure survenue encore en mémoire.

Le cas particulier des départements de montagne couverts par les services RTM.

La base RTM-Évènements

Les districts Adour-Garonne et Rhône-Méditerranée ont une spécificité : la présence du service RTM (Restauration des Terrains en Montagne), couvrant les 11 départements des Alpes (74, 73, 38, 05, 04, 06) et des Pyrénées (66, 09, 31, 65, 64).

L'activité de veille et de prise en compte globale des risques spécifiques à la montagne de ce service l'a amené à capitaliser l'information recueillie sur les phénomènes de montagne (avalanches, inondations, crues torrentielles, ravinements, chutes de blocs, glissements de terrain,...). A partir de leurs observations sur le terrain, les services départementaux du RTM ont ainsi collationné les événements jugés « marquants » (phénomènes de grande ampleur, impact sur des enjeux, ...) dans des fiches descriptives. Les caractéristiques de l'événement (cause, nature, durée, emprise...) y sont décrites textuellement, y compris les impacts et victimes connus. Dans certains départements, notamment dans les Pyrénées, les données observées ont été complétées par une analyse des archives historiques.

Ces fiches événements, liés à un type de phénomène, ont été regroupées dans une base de données départementale : la BD-RTM Évènements. Ces bases départementales ont vocation à intégrer progressivement une base nationale RTM en cours de constitution. Les informations concernant les inondations et les crues torrentielles seront également visibles depuis la base nationale BDHI.

A coté des événements, chaque base contient des informations sur les ouvrages et dispositifs de protection existant. Les événements sont rattachés à un à plusieurs « sites », qui permet leur localisation. Un site concerne une ou plusieurs communes, ce qui est souvent le cas pour les phénomènes d’inondation ou de crues torrentielles. Mais les impacts d’un événement sont décrits, le cas échéant, pour chaque commune du ou des sites de rattachement de l'événement.

Mobilisation de la base et de l'expertise des services départementaux pour l'EPRI 2011

Cette base permet d’apporter un éclairage particulier aux phénomènes d’inondation et de crues torrentielles dans les zones de montagne, phénomènes dont l'emprise géographique peut être limitée mais aux conséquences dommageables potentiellement désastreuses.

Toutefois, les données consignées dans les bases départementales reflètent de façon variable la sensibilité actuelle des communes à des phénomènes naturels, soit parce que des informations importantes peuvent encore manquer sur des événements passés importants, soit parce que la vulnérabilité des communes a pu évoluer par rapport à celle du temps des événements anciens connus et décrits (évolution des enjeux, évolution de l'aléa lié à la mise en place de protections,...etc.).
Les données brutes et informations de base ont donc été interprétées et complétées par un travail d'expertise. Ce travail d'expertise a été limité pour l'EPRI à l'apport de la connaissance globale du département et du territoire, sans autre investigation, étude complémentaires ou recherche approfondie locale. Enfin, la variabilité interdépartementale de la richesse des bases (certains services départementaux RTM ayant mené des recherches historiques approfondies) interdit toute comparaison des informations quantitatives (nombre d'événements d'inondation par exemple) entre les départements.

Prenant en compte ces limites, les informations des bases ont été exploitées pour l'EPRI 2011. Les deux types de phénomènes examinés dans les bases RTM sont les inondations et les crues torrentielles, pour lesquelles les définitions suivantes sont retenues dans les bases RTM :

- **inondation** : crues affectant de secteurs à faibles pente avec débordement de cours d'eau (inondation) à l'aval de bassins versants d'une superficie de l'ordre de plus de 100 km² dont les temps de concentration sont, par convention, supérieurs à 12 heures. Les inondations par remontée de nappe sont rattachées à cette classe.

- **crue torrentielle** : crues rapides, où les transport solides jouent souvent un rôle important (laves, écoulements chargés, …). Cette catégorie comprend les torrents au sens strict, les petits bassins versants ruraux, les phénomènes de ruissellements urbains, les tronçons amont des rivières torrentielles (pentes supérieures à quelques pour cent). Les affouillements, les gravures, les érosions de berges sont des phénomènes associés à cette catégorie.

Les principaux événements inventoriés dans les bases RTM ont ainsi été intégrés dans l'identification des événements passés significatifs présentés dans ces Annexes, les plus remarquables faisant l'objet d'une synthèse écrite dans le corps du texte.

En complément de l'identification de ces événements passés significatifs, un travail d'analyse a été mené à l'échelle départementale pour identifier les communes les plus sensibles aux inondations et aux crues torrentielles de chaque département, au regard de l'exploitation de la BD-RTM et de la connaissance locale des services RTM.

Méthodologie retenue pour l'identification des communes les plus concernées par le risque d'inondation et de crue torrentielle en montagne

L'analyse a été menée à l'échelle de la commune, ce qui a conduit à éclater par commune des événements rattachés à des sites généralement pluri-communaux.

Les bases ont dans un premier temps fait l'objet d'un traitement centralisé consistant, pour chacun des départements concernés, à classer de manière automatique et provisoire les communes en fonction du nombre d'événements, et selon différents critères d'approche : la nature de l'événement telle que codifiée dans la base (inondation ou crue torrentielle), la période (événements antérieurs à 1950 ou plus récents), et l'effectivité des impacts de ces événements (victimes, dégâts et perturbations). Les événements ayant entraîné des victimes ont été mis en évidence.

Ces classements ont ensuite été mis à disposition des services départementaux pour une analyse et expertise, qui les a conduit à proposer un autre classement des communes les plus impactées. Selon les départements et la richesse de la base départementale, les communes ont été analysées pour les phénomènes d'inondation et de crues torrentielles séparément, ensemble, ou pour les phénomènes de crues torrentielles uniquement.

Les analyses des services départementaux RTM ont fait ressortir le caractère incomplet et hétérogène des bases et donc de l'importance de l'analyse experte pour proposer un classement définitif pour l'EPRI 2011. Cette analyse experte a permis d'intégrer en complément des informations de la base, les connaissances des services sur les enjeux actuels, l'évolution des aménagements de protection dans le temps et leurs dépassements potentiels, les caractéristiques spécifiques des phénomènes (rapidity de développement, énergie, durée...)

Le classement obtenu à l'échelle de chaque département présente une certaine subjectivité, mais permet pour le premier cycle de l'EPRI d'identifier les communes qui pourraient être le plus fortement impactées par ces phénomènes.
ANNEXES

Les 10 premières communes classées pour le phénomène crue torrentielle (ou crue torrentielle et inondation) de chaque département ont ensuite été localisées et mises en valeur dans l'EPRI à l'échelle du district. Cette représentation, bien qu'intéressante, peut avoir tendance à masquer l'hétérogénéité de l'analyse entre départements. Aucune analyse comparative à l'échelle du district n'a pu être menée entre ces classements départementaux dans le calendrier d'élaboration de l'EPRI 2011.
Références et bibliographie

Les sources des documents présentés dans cette Évaluation Préliminaire des Risques d’Inondation sont indiquées sur chaque illustration, carte ou schéma.

Les ressources bibliographiques spécifiques employées sont développées dans les volumes correspondants aux EPRI de Sous Bassins.
ANNEXES

Unités de présentation

- Sous bassin de l’Adour
- Sous bassin de la Charente
- Sous bassin de la Dordogne
- Sous bassin de la Garonne
- Sous bassin du Lot
- Sous bassins du Tarn et de l’Aveyron
- Littoral Atlantique